(a)
Interpretation:
The structural formula of reaction products formed in the given reaction has to be drawn.
Concept Introduction:
Breaking of the carbon‑oxygen single bond present between the “acid part” and “alcohol part” is one of the important reactions of ester. This process of breaking the bond between the carbon‑oxygen is known as ester hydrolysis or saponification. The condition prevails in the reaction determines it as ester hydrolysis of saponification.
Ester hydrolysis takes place in ester when it is treated with strong acid or enzymes as catalyst. Reverse of esterification reaction is the ester hydrolysis.
Saponification is the reaction that ester undergoes when a strong base is used to give the product as
(b)
Interpretation:
The structural formula of reaction products formed in the given reaction has to be drawn.
Concept Introduction:
Breaking of the carbon‑oxygen single bond present between the “acid part” and “alcohol part” is one of the important reactions of ester. This process of breaking the bond between the carbon‑oxygen is known as ester hydrolysis or saponification. The condition prevails in the reaction determines it as ester hydrolysis of saponification.
Ester hydrolysis takes place in ester when it is treated with strong acid or enzymes as catalyst. Reverse of esterification reaction is the ester hydrolysis.
Saponification is the reaction that ester undergoes when a strong base is used to give the product as carboxylic acid salt and alcohol.
(c)
Interpretation:
The structural formula of reaction products formed in the given reaction has to be drawn.
Concept Introduction:
Breaking of the carbon‑oxygen single bond present between the “acid part” and “alcohol part” is one of the important reactions of ester. This process of breaking the bond between the carbon‑oxygen is known as ester hydrolysis or saponification. The condition prevails in the reaction determines it as ester hydrolysis of saponification.
Ester hydrolysis takes place in ester when it is treated with strong acid or enzymes as catalyst. Reverse of esterification reaction is the ester hydrolysis.
Saponification is the reaction that ester undergoes when a strong base is used to give the product as carboxylic acid salt and alcohol.
(d)
Interpretation:
The structural formula of reaction products formed in the given reaction has to be drawn.
Concept Introduction:
Breaking of the carbon‑oxygen single bond present between the “acid part” and “alcohol part” is one of the important reactions of ester. This process of breaking the bond between the carbon‑oxygen is known as ester hydrolysis or saponification. The condition prevails in the reaction determines it as ester hydrolysis of saponification.
Ester hydrolysis takes place in ester when it is treated with strong acid or enzymes as catalyst. Reverse of esterification reaction is the ester hydrolysis.
Saponification is the reaction that ester undergoes when a strong base is used to give the product as carboxylic acid salt and alcohol.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
General, Organic, and Biological Chemistry
- Fill in reactants, products, or conditions needed to complete the following reaction.arrow_forwardWhat is the characteristic reaction of carboxylic acid derivatives? oxidation electrophilic addition nucleophilic elimination nucleophilic acyl substitutionarrow_forwardWhat is the oxidation product of this compound? propanone ethanoic acid acetic acid propanoic acidarrow_forward
- Write the necessary reactants or main product in the following reaction:arrow_forwardWhen propene reacts with gaseous hydrogen bromide, HBr, two products, 1-bromopropane and 2-bromopropane are formed. The reaction is a two-step process in which the electrophilic attack occurs in the first step. Identify the electrophile in this reaction Draw a diagram showing the first step of the reaction that leads to the production of 2-bromopropane.arrow_forwardIndicate the principal product or complete the following chemical reactions. NH2 CH3 1. KMNO4, HO, calor CH3 2. H₂O* HBrarrow_forward
- Describe the acidity of different carboxylic acids and predict the products obtained when they react with strong bases.arrow_forwardDetermine the major product of the reaction.arrow_forwardPotassium permanganate and potassium dichromate are very similar in their oxidizing abilities, however there are differences. If I want to convert 4-hexen-1-ol into 4-hexenoic acid, which would be the appropriate oxidizing agent to use? Explain your answer using equations that show the two different products that would form via the two different oxidizing agents.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co