Concept explainers
(a)
Interpretation: The following combustion reaction is to be completed and balanced chemical equation needs to be written for the reaction.
Concept Introduction : Combustion is a
(a)
Answer to Problem 5E
Balanced chemical equation for the given reaction is,
Explanation of Solution
Reaction of covalent compound (having C and H atoms) with oxygen produces carbon dioxide and water. So, the complete reaction for the given reaction is,
Balanced chemical reaction is the chemical equation in which number of atoms of every element is equal in both reactant and product side of the chemical equal.
The above equation is not balanced. To balance the equation, add coefficient 7 to
(b)
Interpretation: The following combustion reaction is to be completed and balanced chemical equation needs to be written for the reaction.
Concept Introduction : Combustion is a chemical reaction in which a compound or an element undergoes reaction with oxygen and releases energy in the form of light and heat. Combustion of covalent compounds comprising carbon and hydrogen produces carbon dioxide and water. The combustion of metallic substance produces metal oxide.
(b)
Answer to Problem 5E
Balanced chemical equation for the given reaction is,
Explanation of Solution
Reaction of covalent compound (having C and H atoms) with oxygen produces carbon dioxide and water. So, the complete reaction for the given reaction is,
Balanced chemical reaction is the chemical equation in which number of atoms of every element is equal in both reactant and product side of the chemical equal.
The above equation is not balanced. To balance the equation, add coefficient 4 to
(c)
Interpretation: The following combustion reaction is to be completed and balanced chemical equation needs to be written for the reaction.
Concept Introduction : Combustion is a chemical reaction in which a compound or an element undergoes reaction with oxygen and releases energy in the form of light and heat. Combustion of covalent compounds comprising carbon and hydrogen produces carbon dioxide and water. The combustion of metallic substance produces metal oxide.
(c)
Answer to Problem 5E
Balanced chemical equation for the given reaction is,
Explanation of Solution
Reaction of covalent compound (having C and H atoms) with oxygen produces carbon dioxide and water. So, the complete reaction for the given reaction is,
Balanced chemical reaction is the chemical equation in which number of atoms of every element is equal in both reactant and product side of the chemical equal.
The above equation is not balanced. To balance the equation, add coefficient 4 to
(d)
Interpretation: The following combustion reaction is to be completed and balanced chemical equation needs to be written for the reaction.
Concept Introduction: Combustion is a chemical reaction in which a compound or an element undergoes reaction with oxygen and releases energy in the form of light and heat. Combustion of covalent compounds comprising carbon and hydrogen produces carbon dioxide and water. The combustion of metallic substance produces metal oxide.
(d)
Answer to Problem 5E
Balanced chemical equation for the given reaction is,
Explanation of Solution
When metals react with oxygen metal oxide produces. So, the complete reaction of calcium (metal) with oxygen is as follows:
The above equation is not a balanced chemical equation. To balance the equation, add coefficient 2 to both Ca and
(e)
Interpretation: The following combustion reaction is to be completed and balanced chemical equation needs to be written for the reaction.
Concept Introduction: Combustion is a chemical reaction in which a compound or an element undergoes reaction with oxygen and releases energy in the form of light and heat. Combustion of covalent compounds comprising carbon and hydrogen produces carbon dioxide and water. The combustion of metallic substance produces metal oxide.
(e)
Answer to Problem 5E
Balanced chemical equation for the reaction is,
Explanation of Solution
When metals react with oxygen corresponding metal oxide produces. So, the reaction of lithium (metal) with oxygen is as follows:
The above equation is not a balanced chemical equation. To balance the equation, add coefficient 2 to
(f)
Interpretation: The following combustion reaction is to be completed and balanced chemical equation needs to be written for the reaction.
Concept Introduction: Combustion is a chemical reaction in which a compound or an element undergoes reaction with oxygen and releases energy in the form of light and heat. Combustion of covalent compounds comprising carbon and hydrogen produces carbon dioxide and water. The combustion of metallic substance produces metal oxide.
(f)
Answer to Problem 5E
The balanced chemical equation for the reaction is,
Explanation of Solution
Silicon is a non-metal and reaction of non-metal with oxygen produces non-metal oxide. So, the reaction is,
The above equation is balanced and therefore no need to balance again.
Chapter U5 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Campbell Biology (11th Edition)
Human Anatomy & Physiology (2nd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Applications and Investigations in Earth Science (9th Edition)
Introductory Chemistry (6th Edition)
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
- (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY