
Interpretation: The reason of less stability of more active metals needs to be explained.
Concept introduction: The reactivity series of metal in the order of increasing reactivity is,
Gold < Silver < Mercury < Bismuth < Antimony < Hydrogen < Lead < Tin < Nickel < Cobalt < Cadmium < Iron < Chromium < Zinc < Manganese < Aluminium < Calcium < Strontium < Barium < Lithium < Sodium < Potassium

Answer to Problem 2E
The metals that are more active also considered less stablebecause they lose electrons and they easily form a metal oxide generating an impure metal.
Explanation of Solution
The reactivity series of metal in the order of increasing reactivity is,
Gold < Silver < Mercury < Bismuth < Antimony < Hydrogen < Lead < Tin < Nickel < Cobalt < Cadmium < Iron < Chromium < Zinc < Manganese < Aluminium < Calcium < Strontium < Barium < Lithium < Sodium < Potassium
The active metals are usually less stable because they lose electrons and they easily form a metal oxide generating an impure metal. This is because, metal high in the activity series reacts in a vigorous way with compounds and gives up electrons to form positive ions easily and also easily undergoes corrosion. While, a metal low in the activity series, does not vigorously reacts with chemicals and does not easily give up electrons to form positive and undergo corrosion easily.
The metals that are more active also considered less than the metals that are less active.
Chapter U5 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Brock Biology of Microorganisms (15th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Anatomy & Physiology (6th Edition)
Human Anatomy & Physiology (2nd Edition)
Microbiology: An Introduction
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- For Raman spectroscopy/imaging, which statement is not true regarding its disadvantages? a) Limited spatial resolution. b) Short integration time. c) A one-dimensional technique. d) Weak signal, only 1 in 108 incident photons is Raman scattered. e) Fluorescence interference.arrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c. (Please provide a full derivation of the equation for x from the equation for I). d) Calculate x for the 1645 cm-1 bandarrow_forwardI need help with the follloaingarrow_forward
- For a CARS experiment on a Raman band 918 cm-1, if omega1= 1280 nm, calculate the omega2 in wavelength (nm) and the CARS output in wavelength (nm).arrow_forwardI need help with the following questionarrow_forwardFor CARS, which statement is not true regarding its advantages? a) Contrast signal based on vibrational characteristics, no need for fluorescent tagging. b) Stronger signals than spontaneous Raman. c) Suffers from fluorescence interference, because CARS signal is at high frequency. d) Faster, more efficient imaging for real-time analysis. e) Higher resolution than spontaneous Raman microscopy.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





