(a)
Interpretation: The substance with higher specific heat capacity from Al and Pb needs to be determined.
Concept Introduction: The specific heat capacity of substance can be defined as the heat required raising the temperature of 1 g of substance by 1 °C.
It is measure in J/ g.K or J/g °C. The specific heat capacity depends on the intermolecular forces. For example, water has high specific heat capacity due to presence of hydrogen bonds between molecules.
(a)
Answer to Problem 3E
Al has more specific heat capacity than Pb.
Explanation of Solution
Aluminum has more specific heat capacity than lead. This is because Al forms Al3+ whereas lead forms Pb2+ ions.
Due to more charge and attraction force, more energy is required to raise the temperature of 1 g of Aluminum that makes higher value of specific heat capacity of aluminum compare to lead.
(b)
Interpretation: The substance with higher specific heat capacity from H2 and Ar needs to be determined.
Concept Introduction: The specific heat capacity of substance can be defined as the heat required raising the temperature of 1 g of substance by 1 °C.
It is measure in J/ g.K or J/g °C. The specific heat capacity depends on the intermolecular forces. For example, water has high specific heat capacity due to presence of hydrogen bonds between molecules.
(b)
Answer to Problem 3E
H2 has more specific heat capacity than Ar.
Explanation of Solution
Hydrogen gas has more specific heat capacity than Argon. This is because argon is a noble gas and exist as monoatomic gas. The weak dispersion forces exist between argon atoms therefore it has lesser value of specific heat capacity compare to hydrogen gas.
(c)
Interpretation: The substance with higher specific heat capacity from F2 and Cl2 needs to be determined.
Concept Introduction: The specific heat capacity of substance can be defined as the heat required raising the temperature of 1 g of substance by 1 °C.
It is measure in J/ g.K or J/g °C. The specific heat capacity depends on the intermolecular forces. For example, water has high specific heat capacity due to presence of hydrogen bonds between molecules.
(c)
Answer to Problem 3E
Chlorine has more specific heat capacity than fluorine.
Explanation of Solution
Fluorine exists in gaseous state as due to small size and compact structure, only weak dispersion forces exist between molecules. As the molecular mass increases, the strength of dispersion forces increases therefore chlorine molecules have stronger dispersion forces. Thus the specific heat capacity of chlorine is more than fluorine.
Chapter U5 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Campbell Essential Biology (7th Edition)
Chemistry: The Central Science (14th Edition)
Chemistry: A Molecular Approach (4th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Microbiology: An Introduction
Anatomy & Physiology (6th Edition)
- SH 0arrow_forward2. Please consider the two all 'cis' isomers of trimethylcyclohexane drawn below. Draw the two chair conformers of each stereoisomer below (1 and 2) and calculate their torsional interaction energies in order to identify the lower energy conformer for each stereoisomer. Based on your calculations, state which of the two stereoisomers 1 and 2 is less stable and which is more stable. [1,3-diaxial CH3 CH3 = 3.7kcal/mol; 1,3-diaxial CH3 H = 0.88kcal/mol; cis-1,2 (axial:equatorial) CH3 CH3 = 0.88kcal/mol; trans-1,2-diequatorial CH3 CH3 = 0.88kcal/mol) all-cis-1,2,3- 1 all-cis-1,2,4- 2arrow_forwardNonearrow_forward
- What is the mechanism by which the 1,4 product is created? Please draw it by hand with arrows and stuff.arrow_forwardWhat is the relationship between A and B? H3C A Br Cl H3C B Br relationship (check all that apply) O same molecule O enantiomer O diastereomer structural isomer O stereoisomer isomer O need more information to decide O same molecule ☐ enantiomer Br Br Br CH3 Br CI CH3 O diastereomer ☐ structural isomer ☐ stereoisomer isomer O need more information to decide O same molecule O enantiomer Odiastereomer structural isomer O stereoisomer ☐ isomer O need more information to decidearrow_forwardb. Please complete the zig-zag conformation of the compound (3R,4S)-3,4-dichloro-2,5-dimethylhexane by writing the respective atoms in the boxes. 4arrow_forward
- c. Serricornin, the female-produced sex pheromone of the cigarette beetle, has the following structure. OH What is the maximum number of possible stereoisomers? Is this structure a meso compound? d. Please consider the natural product alkaloids shown below. Are these two structures enantiomers, diastereomers or conformers? H HO H H HN HO HN R R с R=H cinchonidine R=ET cinchonine Harrow_forwardNail polish remover containing acetone was spilled in a room 5.23 m × 3.28 m × 2.76 m. Measurements indicated that 2,250 mg of acetone evaporated. Calculate the acetone concentration in micrograms per cubic meter.arrow_forwardPlease help me answer number 1. 1. If your graphs revealed a mathematical relationship between specific heat and atomic mass, write down an equation for the relationship. I also don't understand, is the equation from the line regression the one that I'm suppose use to show the relationship? If so could you work it all the way out?arrow_forward
- Describe the principle of resonance and give a set of Lewis Structures to illustrate your explanation.arrow_forwardDon't used hand raitingarrow_forwardIt is not unexpected that the methoxyl substituent on a cyclohexane ring prefers to adopt the equatorial conformation. OMe H A G₂ = +0.6 kcal/mol OMe What is unexpected is that the closely related 2-methoxytetrahydropyran prefers the axial conformation: H H OMe OMe A Gp=-0.6 kcal/mol Methoxy: CH3O group Please be specific and clearly write the reason why this is observed. This effect that provides stabilization of the axial OCH 3 group in this molecule is called the anomeric effect. [Recall in the way of example, the staggered conformer of ethane is more stable than eclipsed owing to bonding MO interacting with anti-bonding MO...]arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY