
Concept explainers
(a)
Interpretation: The diagram which represents endothermic reaction needs to be identified.
Concept Introduction : Endothermic reaction is the reaction in which the energy is consumed by the reaction and exothermic reaction is the reaction in which energy is released by the reaction. For endothermic reaction heat is expressed as positive value and for exothermic reaction heat is expressed as negative value.
(a)

Answer to Problem 4E
The diagram which represents endothermic reaction is,
Explanation of Solution
Two diagrams are given. One is for the reaction of methane and oxygen to form carbon dioxide and water and
(b)
Interpretation: The substances having lowest potential energy are to be identified.
Concept Introduction : The energy in a system is a combination of potential and kinetic energy. The energy of motion is the kinetic energy and the stored energy within a physical energy is termed as potential energy.
(b)

Answer to Problem 4E
Explanation of Solution
For an exothermic reaction, potential energy of the system decreases as conversion of reactants to product occurs which results increase of kinetic energy. So for combustion reaction, products, that is,
(c)
Interpretation: What happens to kinetic energy when methane undergoes combustion reaction to form water and carbon dioxide needs to be explained.
Concept Introduction : The energy in a system is a combination of potential and kinetic energy. The energy of motion is the kinetic energy and the stored energy within a physical energy is termed as potential energy.
(c)

Answer to Problem 4E
Kinetic energy increases when methane undergoes combustion reaction to form water and carbon dioxide.
Explanation of Solution
Energy is conserved in every
(d)
Interpretation: The need of constant input of energy in the reverse reaction needs to be explained.
Concept Introduction: In a chemical process, energy is conserved. This means, net exchange of energy in a forward process is equal and opposite to exchange of net energy in the reverse process. If a forward reaction exothermic, the reverse reaction is endothermic.
(d)

Answer to Problem 4E
Reverse reaction is endothermic reaction. So, constant amount of energy must be supplied.
Explanation of Solution
The reaction of methane and oxygen to produce carbon dioxide and water is an exothermic reaction. As the energy is conserved, the reverse reaction to form methane and oxygen from carbon dioxide and water is an endothermic reaction. An endothermic reaction always required supply of energy to result the reaction. So, there is need of constant input of energy in the reverse reaction.
(e)
Interpretation: The heat of the reaction needs to be calculated using the bond energies and the calculated value is to be compared with the value given the energy diagram.
Concept Introduction: To estimate the energy of an entire chemical reaction, the reaction is to considered as it takes place in two parts, that is, energy in for bond breaking and energy out for bond making. The energy of bond breaking is positive and bond making is negative.
(e)

Answer to Problem 4E
The calculated value of heat energy for the reaction is
Explanation of Solution
The combustion reaction of methane is,
Here,
Taking values from chapter 104,
In bond making bond energies are taken as negative values as energy added from system to the surroundings.
Net energy is the summation of energy of bond breaking and bond making.
The heat energy for the reaction given in the diagram is
Chapter U5 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Organic Chemistry (8th Edition)
Microbiology with Diseases by Body System (5th Edition)
Anatomy & Physiology (6th Edition)
Campbell Biology (11th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
- Vnk the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest bolling point, choose 2 next to the substance with the next highest boiling point, and so on. substance C D chemical symbol, chemical formula or Lewis structure. CH,-N-CH, CH, H H 10: H C-C-H H H H Cale H 10: H-C-C-N-CH, Bri CH, boiling point (C) Сен (C) B (Choosearrow_forwardPlease help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!arrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br "CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forward
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





