Living By Chemistry: First Edition Textbook
Living By Chemistry: First Edition Textbook
1st Edition
ISBN: 9781559539418
Author: Angelica Stacy
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter U3.18, Problem 11E

(a)

Interpretation Introduction

Interpretation:

The humidity is 65% during daytime when the temperature is 30°C, if the temperature drops to 25°C at night then the expectation of fog needs to be explained.

Concept Introduction:

Water vapor concentration in air is termed as humidity. There is a limit on the number density of molecules of water which may be in the air for a given temperature. The air saturates at a certain point due to which no net evaporation takes place further.

(a)

Expert Solution
Check Mark

Answer to Problem 11E

The actual vapor density is 1.105molper1000mL which is smaller than the maximum vapor density at 25°C 1.25 mol per 1000 L. Hence, there is no chance of precipitation.

Explanation of Solution

The percent of the maximum humidity for a specified temperature is termed as relative humidity. When the air holds the maximum amount of water vapor for the temperature of the air, it is at 100% relative humidity.

The maximum vapor density at 30°C is 1.7 mol per 1000 L, so, if this value is 0.85, at 30°C in a region, then the relative humidity is,

( 0.85 1.7 )× 100% =0.5×100%

        =50%

The graph showing variation in vapor density with temperature represents the maximum number density, that is, for air maximum vapor density is in temperatures range between 1°C and 40°C. The representation of maximum vapor density is at Y-axis while the representation of the temperature in °C is at x-axis.

The value of y, for = 30, is 1.7 mol per 1000 L. Therefore, water vapor density at 100% relative humidity for 30°C is 1.7 mol per 1000 L ....... (1)

The value of y, for = 25, is 1.25 mol per 1000 L. Therefore, water vapor density at 100% relative humidity for 25°C is 1.25 mol per 1000 L ....... (2)

Given,

The relative humidity is 65%.

Calculate vapor density at 65% humidity at 30°C: Put the vapor density value from equation (1).

Vapor density at65%humidity at30°C = 65%ofmaximumvapordensityat30°C

                   = 65%×1.7molper1000mL

                   = 0.65×1.7molper1000mL

                   =1.105molper1000mL

At night when the temperature is 25°C the vapor density will be the same. Therefore, maximum vapor density is 1.25 mol per 1000 L from equation (2).

The actual vapor density 1.105molper1000mL is smaller than the maximum vapor density at 25°C 1.25 mol per 1000 L. Hence, there is no chance of precipitation.

(b)

Interpretation Introduction

Interpretation:

The humidity is 65% during daytime when the temperature is 30°C, if the temperature drops to 20°C at night then the expectation of fog needs to be explained.

Concept Introduction:

Water vapor concentration in air is termed as humidity. There is a limit on the number density of molecules of water which may be in the air for a given temperature. The air saturates at a certain point due to which no net evaporation takes place further.

(b)

Expert Solution
Check Mark

Answer to Problem 11E

The actual vapor density 1.105molper1000mL is greater than the maximum vapor density at 20°C 0.90 mol per 1000 L. Hence, there is a chance of precipitation.

Explanation of Solution

The percent of the maximum humidity for a specified temperature is termed as relative humidity. When air holds the maximum concentration of water vapor for the temperature of the air, it is at 100% relative humidity.

The maximum vapor density at 30°C is 1.7 mol per 1000 L. So, if this value is 0.85, at 30°C in a region, then the relative humidity is,

( 0.85 1.7 )× 100% =0.5×100%

        =50%

The graph showing variation in vapor density with temperature represents the maximum number density, that is, for air maximum vapor density is in temperatures range between 1°C and 40°C. The representation of maximum vapor density is at Y-axis while the representation of the temperature in °C is at x-axis.

The value of y, for = 30, is 1.7 mol per 1000 L. Therefore, water vapor density at 100% relative humidity for 30°C is 1.7 mol per 1000 L ....... (1)

The value of y, for = 20, is 0.90 mol per 1000 L. Therefore, water vapor density at 100% relative humidity for 20°C is 0.90 mol per 1000 L ....... (2)

Given,

The relative humidity is 65%.

Calculate vapor density at 65% humidity at 30°C: Put the vapor density value from equation (1).

Vapor density at65%humidity at30°C = 65%ofmaximumvapordensityat30°C

                   = 65%×1.7molper1000mL

                   = 0.65×1.7molper1000mL

                   =1.105molper1000mL

At night when the temperature is 20°C the vapor density will be the same. Therefore, maximum vapor density is 0.90 mol per 1000 L from equation (2).

The actual vapor density 1.105molper1000mL is greater than the maximum vapor density at 20°C 0.90 mol per 1000 L. Hence, there is a chance of precipitation.

Chapter U3 Solutions

Living By Chemistry: First Edition Textbook

Ch. U3.2 - Prob. 4ECh. U3.2 - Prob. 5ECh. U3.2 - Prob. 6ECh. U3.2 - Prob. 7ECh. U3.3 - Prob. 1TAICh. U3.3 - Prob. 1ECh. U3.3 - Prob. 2ECh. U3.3 - Prob. 3ECh. U3.3 - Prob. 4ECh. U3.3 - Prob. 5ECh. U3.3 - Prob. 6ECh. U3.3 - Prob. 7ECh. U3.3 - Prob. 8ECh. U3.3 - Prob. 9ECh. U3.4 - Prob. 1TAICh. U3.4 - Prob. 1ECh. U3.4 - Prob. 2ECh. U3.4 - Prob. 3ECh. U3.4 - Prob. 4ECh. U3.4 - Prob. 5ECh. U3.4 - Prob. 6ECh. U3.4 - Prob. 7ECh. U3.4 - Prob. 8ECh. U3.4 - Prob. 9ECh. U3.5 - Prob. 1TAICh. U3.5 - Prob. 1ECh. U3.5 - Prob. 2ECh. U3.5 - Prob. 3ECh. U3.5 - Prob. 4ECh. U3.5 - Prob. 5ECh. U3.5 - Prob. 6ECh. U3.5 - Prob. 7ECh. U3.5 - Prob. 8ECh. U3.5 - Prob. 9ECh. U3.5 - Prob. 10ECh. U3.5 - Prob. 11ECh. U3.5 - Prob. 12ECh. U3.6 - Prob. 1TAICh. U3.6 - Prob. 1ECh. U3.6 - Prob. 2ECh. U3.6 - Prob. 3ECh. U3.6 - Prob. 4ECh. U3.6 - Prob. 5ECh. U3.6 - Prob. 6ECh. U3.6 - Prob. 7ECh. U3.6 - Prob. 8ECh. U3.7 - Prob. 1TAICh. U3.7 - Prob. 1ECh. U3.7 - Prob. 2ECh. U3.7 - Prob. 3ECh. U3.7 - Prob. 4ECh. U3.7 - Prob. 5ECh. U3.7 - Prob. 6ECh. U3.8 - Prob. 1TAICh. U3.8 - Prob. 1ECh. U3.8 - Prob. 2ECh. U3.8 - Prob. 3ECh. U3.8 - Prob. 4ECh. U3.8 - Prob. 5ECh. U3.8 - Prob. 6ECh. U3.8 - Prob. 7ECh. U3.8 - Prob. 8ECh. U3.8 - Prob. 9ECh. U3.8 - Prob. 10ECh. U3.9 - Prob. 1TAICh. U3.9 - Prob. 1ECh. U3.9 - Prob. 2ECh. U3.9 - Prob. 3ECh. U3.9 - Prob. 4ECh. U3.9 - Prob. 5ECh. U3.9 - Prob. 6ECh. U3.9 - Prob. 7ECh. U3.9 - Prob. 8ECh. U3.9 - Prob. 10ECh. U3.10 - Prob. 1TAICh. U3.10 - Prob. 1ECh. U3.10 - Prob. 2ECh. U3.10 - Prob. 4ECh. U3.10 - Prob. 5ECh. U3.10 - Prob. 6ECh. U3.10 - Prob. 7ECh. U3.11 - Prob. 1TAICh. U3.11 - Prob. 1ECh. U3.11 - Prob. 2ECh. U3.11 - Prob. 3ECh. U3.11 - Prob. 4ECh. U3.11 - Prob. 5ECh. U3.12 - Prob. 1TAICh. U3.12 - Prob. 1ECh. U3.12 - Prob. 2ECh. U3.12 - Prob. 3ECh. U3.12 - Prob. 4ECh. U3.12 - Prob. 5ECh. U3.12 - Prob. 6ECh. U3.12 - Prob. 7ECh. U3.12 - Prob. 8ECh. U3.13 - Prob. 1TAICh. U3.13 - Prob. 1ECh. U3.13 - Prob. 2ECh. U3.13 - Prob. 3ECh. U3.13 - Prob. 4ECh. U3.13 - Prob. 5ECh. U3.13 - Prob. 6ECh. U3.13 - Prob. 7ECh. U3.14 - Prob. 1TAICh. U3.14 - Prob. 1ECh. U3.14 - Prob. 2ECh. U3.15 - Prob. 1TAICh. U3.15 - Prob. 1ECh. U3.15 - Prob. 2ECh. U3.15 - Prob. 3ECh. U3.15 - Prob. 4ECh. U3.15 - Prob. 5ECh. U3.15 - Prob. 6ECh. U3.15 - Prob. 7ECh. U3.15 - Prob. 8ECh. U3.16 - Prob. 1TAICh. U3.16 - Prob. 1ECh. U3.16 - Prob. 2ECh. U3.16 - Prob. 3ECh. U3.16 - Prob. 4ECh. U3.16 - Prob. 5ECh. U3.16 - Prob. 6ECh. U3.16 - Prob. 7ECh. U3.17 - Prob. 1TAICh. U3.17 - Prob. 1ECh. U3.17 - Prob. 2ECh. U3.17 - Prob. 3ECh. U3.17 - Prob. 4ECh. U3.17 - Prob. 5ECh. U3.17 - Prob. 6ECh. U3.17 - Prob. 7ECh. U3.17 - Prob. 8ECh. U3.18 - Prob. 1TAICh. U3.18 - Prob. 1ECh. U3.18 - Prob. 2ECh. U3.18 - Prob. 3ECh. U3.18 - Prob. 4ECh. U3.18 - Prob. 5ECh. U3.18 - Prob. 6ECh. U3.18 - Prob. 7ECh. U3.18 - Prob. 8ECh. U3.18 - Prob. 9ECh. U3.18 - Prob. 10ECh. U3.18 - Prob. 11ECh. U3.18 - Prob. 12ECh. U3.19 - Prob. 1TAICh. U3.19 - Prob. 1ECh. U3.19 - Prob. 2ECh. U3.19 - Prob. 4ECh. U3 - Prob. SI1RECh. U3 - Prob. SI2RECh. U3 - Prob. SI3RECh. U3 - Prob. SI4RECh. U3 - Prob. SI5RECh. U3 - Prob. SII1RECh. U3 - Prob. SII2RECh. U3 - Prob. SII3RECh. U3 - Prob. SII4RECh. U3 - Prob. SII5RECh. U3 - Prob. SIII1RECh. U3 - Prob. SIII2RECh. U3 - Prob. SIII3RECh. U3 - Prob. SIII4RECh. U3 - Prob. SIII5RECh. U3 - Prob. 1RECh. U3 - Prob. 2RECh. U3 - Prob. 3RECh. U3 - Prob. 4RECh. U3 - Prob. 5RECh. U3 - Prob. 6RECh. U3 - Prob. 7RECh. U3 - Prob. 8RECh. U3 - Prob. 9RECh. U3 - Prob. 10RECh. U3 - Prob. 11RECh. U3 - Prob. 12RECh. U3 - Prob. 13RE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY