Concept explainers
(a)
Interpretation: The volume of air inside the bottle needs to be calculate, if the volume of glass bottle is 180 mL at 1.0 atm and 25°C temperature.
Concept Introduction:
Due to random movement of gas particles, they colloid with other gas particles and also colloid with wall of container. The collision between gas particles of air and wall of container exert pressure on the wall of container.
The Boyle’s law states that at constant temperature and amount of gas molecules, the volume is inversely proportional to the pressure of gas.
(a)
Answer to Problem 5E
Since the pressure is inversely proportional to the volume therefore the volume of air inside the bottle should increase.
Explanation of Solution
- Initial volume = 180 mL
- Initial temperature =25°C
- Initial pressure = 1.0 atm
- Final pressure = 0.75 atm
- Final temperature = 5°C
The air pressure outside the glass bottle decreases at mountain. Since the pressure is inversely proportional to the volume therefore the volume of air inside the bottle should increase.
(b)
Interpretation: The temperature of air inside the bottle at the top of mountain to cool to 5°C needs to be determined, if the volume of glass bottle is 180 mL at 1.0 atm and 25°C temperature.
Concept Introduction:
Due to random movement of gas particles, they colloid with other gas particles and also colloid with wall of container. The collision between gas particles of air and wall of container exert pressure on the wall of container.
The Boyle’s law states that at constant temperature and amount of gas molecules, the volume is inversely proportional to the pressure of gas.
(b)
Answer to Problem 5E
Yes, the temperature of inside air will decrease as volume is increases and pressure is decreases.
Explanation of Solution
- Initial volume = 180 mL
- Initial temperature =25°C
- Initial pressure = 1.0 atm
- Final pressure = 0.75 atm
- Final temperature = 5°C
Yes, the temperature of inside air will decrease as volume is increases and pressure is decreases. As pressure decreases the gas is expanded and expansion of gas requires energy that will decrease the temperature of inside air.
(c)
Interpretation: The pressure of air inside the bottle needs to be determined, if the volume of glass bottle is 180 mL at 1.0 atm and 25°C temperature.
Concept Introduction:
Due to random movement of gas particles, they colloid with other gas particles and also colloid with wall of container. The collision between gas particles of air and wall of container exert pressure on the wall of container.
The Boyle’s law states that at constant temperature and amount of gas molecules, the volume is inversely proportional to the pressure of gas.
(c)
Answer to Problem 5E
The outside pressure decreases at mountain so inside pressure must increases to balance it.
Explanation of Solution
The outside pressure decreases for bottle therefore the inside pressure will increase the balance the outside pressure. It will increase the volume of inside air in the glass bottle.
(d)
Interpretation: The new pressure of gas needs to be determined, if the volume of glass bottle is 180 mL at 1.0 atm and 25°C temperature.
Concept Introduction:
Due to random movement of gas particles, they colloid with other gas particles and also colloid with wall of container. The collision between gas particles of air and wall of container exert pressure on the wall of container.
The Boyle’s law states that at constant temperature and amount of gas molecules, the volume is inversely proportional to the pressure of gas.
(d)
Answer to Problem 5E
New pressure = 0.93 atm
Explanation of Solution
- Initial volume = 180 mL = 0.180 L
- Initial temperature =25°C = 273 +25 = 298 K
- Initial pressure = 1.0 atm
- Final pressure = 0.75 atm
- Final temperature = 5°C = 273 +5 = 278 K
At constant volume, the new pressure must be:
Chapter U3 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Organic Chemistry
Introductory Chemistry (6th Edition)
Chemistry
Organic Chemistry (9th Edition)
Chemistry: Structure and Properties (2nd Edition)
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY