Concept explainers
(a)
Interpretation: The volume of air inside the bottle needs to be calculate, if the volume of glass bottle is 180 mL at 1.0 atm and 25°C temperature.
Concept Introduction:
Due to random movement of gas particles, they colloid with other gas particles and also colloid with wall of container. The collision between gas particles of air and wall of container exert pressure on the wall of container.
The Boyle’s law states that at constant temperature and amount of gas molecules, the volume is inversely proportional to the pressure of gas.
(a)
Answer to Problem 5E
Since the pressure is inversely proportional to the volume therefore the volume of air inside the bottle should increase.
Explanation of Solution
- Initial volume = 180 mL
- Initial temperature =25°C
- Initial pressure = 1.0 atm
- Final pressure = 0.75 atm
- Final temperature = 5°C
The air pressure outside the glass bottle decreases at mountain. Since the pressure is inversely proportional to the volume therefore the volume of air inside the bottle should increase.
(b)
Interpretation: The temperature of air inside the bottle at the top of mountain to cool to 5°C needs to be determined, if the volume of glass bottle is 180 mL at 1.0 atm and 25°C temperature.
Concept Introduction:
Due to random movement of gas particles, they colloid with other gas particles and also colloid with wall of container. The collision between gas particles of air and wall of container exert pressure on the wall of container.
The Boyle’s law states that at constant temperature and amount of gas molecules, the volume is inversely proportional to the pressure of gas.
(b)
Answer to Problem 5E
Yes, the temperature of inside air will decrease as volume is increases and pressure is decreases.
Explanation of Solution
- Initial volume = 180 mL
- Initial temperature =25°C
- Initial pressure = 1.0 atm
- Final pressure = 0.75 atm
- Final temperature = 5°C
Yes, the temperature of inside air will decrease as volume is increases and pressure is decreases. As pressure decreases the gas is expanded and expansion of gas requires energy that will decrease the temperature of inside air.
(c)
Interpretation: The pressure of air inside the bottle needs to be determined, if the volume of glass bottle is 180 mL at 1.0 atm and 25°C temperature.
Concept Introduction:
Due to random movement of gas particles, they colloid with other gas particles and also colloid with wall of container. The collision between gas particles of air and wall of container exert pressure on the wall of container.
The Boyle’s law states that at constant temperature and amount of gas molecules, the volume is inversely proportional to the pressure of gas.
(c)
Answer to Problem 5E
The outside pressure decreases at mountain so inside pressure must increases to balance it.
Explanation of Solution
The outside pressure decreases for bottle therefore the inside pressure will increase the balance the outside pressure. It will increase the volume of inside air in the glass bottle.
(d)
Interpretation: The new pressure of gas needs to be determined, if the volume of glass bottle is 180 mL at 1.0 atm and 25°C temperature.
Concept Introduction:
Due to random movement of gas particles, they colloid with other gas particles and also colloid with wall of container. The collision between gas particles of air and wall of container exert pressure on the wall of container.
The Boyle’s law states that at constant temperature and amount of gas molecules, the volume is inversely proportional to the pressure of gas.
(d)
Answer to Problem 5E
New pressure = 0.93 atm
Explanation of Solution
- Initial volume = 180 mL = 0.180 L
- Initial temperature =25°C = 273 +25 = 298 K
- Initial pressure = 1.0 atm
- Final pressure = 0.75 atm
- Final temperature = 5°C = 273 +5 = 278 K
At constant volume, the new pressure must be:
Chapter U3 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Human Biology: Concepts and Current Issues (8th Edition)
Microbiology: An Introduction
Applications and Investigations in Earth Science (9th Edition)
Human Anatomy & Physiology (2nd Edition)
Anatomy & Physiology (6th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- Hi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forwardHi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forwardIn alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forward
- Hi, I need help on my practice final, if you could explain how to solve it offer strategies and dumb it down that would be amazing. Detail helpsarrow_forwardBriefly explain the following paragraph: both the distortion of symmetry and the fact that the solid is diamagnetic indicate the existence of a Nb-Nb bond.arrow_forwardHi I need help on my practice final, If you could explain how to solve it, offer strategies, and dumb it down that would be amazing.arrow_forward
- -1 2 3 4 5 7 8 At a certain temperature this reaction follows first-order kinetics with a rate constant of 0.0635 s 2C1,0, (g) →2C1, (g)+50, (g) Suppose a vessel contains C1,0, at a concentration of 1.03 M. Calculate how long it takes for the concentration of C1,0, to decrease by 86.0%. You may assume no other reaction is important. Round your answer to 2 significant digits. e х th Earrow_forwardASAP....arrow_forwardNonearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY