
Concept explainers
a) Cholesterol, C27H46O
Interpretation:
The degree of unsaturation in cholesterol, C27H46O, is to be calculated.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of
To calculate:
The degree of unsaturation in cholesterol with molecular formula C27H46O.

Answer to Problem 67AP
The degree of unsaturation in cholesterol with molecular formula C27H46O is 5.
Explanation of Solution
Molecular formula of cholesterol is C27H46O. If oxygens are ignored the formula becomes C27H46. A hydrocarbon with twenty seven carbons will have the molecular formula C27H56. The compound given has five pairs of hydrogens (H56-H46=10) less. So its degree of unsaturation is 5.
The degree of unsaturation in cholesterol with molecular formula C27H46O is 5.
b) DDT, C14H9Cl5
Interpretation:
The degree of unsaturation in DDT, C14H9Cl5 is to be calculated and to draw five possible structures with this formula.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of alkanes is CnH2n+2. Knowing this relationship and by working backward the degree of unsaturation in a molecule can be calculated. Each ring or a double bond in a molecule corresponds to a loss of two hydrogens from the formula of alkane. If the compound contains halogens, oxygen and/or nitrogen, then the number of halogens is to be added to the number of hydrogens, the number of oxygens to be ignored and number of the nitrogens is to be subtracted, in arriving at an equivalent hydrocarbon formula.
To calculate:
The degree of unsaturation in DDT with molecular formula C14H9Cl5.

Answer to Problem 67AP
The degree of unsaturation in DDT with molecular formula C14H9Cl5 is 8.
Explanation of Solution
Molecular formula of DDT is C14H9Cl5. Adding five hydrogens for five chlorines, we get the formula as C14H14. A hydrocarbon with fourteen carbons will have the molecular formula C14H30. The compound given has eight pairs of hydrogens (H30-H14=16) less. So its degree of unsaturation is 8.
The degree of unsaturation in DDTwith molecular formula C14H9Cl5 is 8.
c) Prostaglandin E1, C20H34O5
Interpretation:
The degree of unsaturation in prostaglandin E1, C20H34O5 is to be calculated.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of alkanes is CnH2n+2. Knowing this relationship and by working backward the degree of unsaturation in a molecule can be calculated. Each ring or a double bond in a molecule corresponds to a loss of two hydrogens from the formula of alkane. If the compound contains halogens, oxygen and/or nitrogen, then the number of halogens is to be added to the number of hydrogens, the number of oxygens to be ignored and number of the nitrogens is to be subtracted, in arriving at an equivalent hydrocarbon formula.
To calculate:
The degree of unsaturation in prostaglandin E1 with molecular formula C20H34O5.

Answer to Problem 67AP
The degree of unsaturation in prostaglandin E1 with molecular formula C20H34O5 is 4.
Explanation of Solution
Molecular formula of porostaglandin E1 is C20H34O5. If oxygens are ignored the formula becomes C20H34. A hydrocarbon with twenty carbons will have the molecular formula C20H42. The compound given has four pairs of hydrogens (H42-H34=8) less. So its degree of unsaturation is 4.
The degree of unsaturation in prostaglandin E1 with molecular formula C20H34O5 is 4.
d) Caffeine, C8H10N4O2
Interpretation:
The degree of unsaturation in caffeine, C8H10N4O2, is to be calculated.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of alkanes is CnH2n+2. Knowing this relationship and by working backward the degree of unsaturation in a molecule can be calculated. Each ring or a double bond in a molecule corresponds to a loss of two hydrogens from the formula of alkane. If the compound contains halogens, oxygen and/or nitrogen, then the number of halogens is to be added to the number of hydrogens, the number of oxygens to be ignored and number of the nitrogens is to be subtracted, in arriving at an equivalent hydrocarbon formula.
To calculate:
The degree of unsaturation in caffeine with molecular formula C8H10N4O2.

Answer to Problem 67AP
The degree of unsaturation in caffeine with molecular formula C8H10N4O2 is 6.
Explanation of Solution
Molecular formula of caffeine is C8H10N4O2. If four hydrogens are subtracted for four nitrogens and oxygens are ignored the formula becomes C8H6. A hydrocarbon with eight carbons will have the molecular formula C8H18. The compound given has six pairs of hydrogens (H18-H6=12) less. So its degree of unsaturation is 6.
Conclusion:
The degree of unsaturation in caffeine with molecular formula C8H10N4O2 is 6.
The degree of unsaturation in caffeine with molecular formula C8H10N4O2 is 6.
e) Cortisone, C21H28O5
Interpretation:
The degree of unsaturation in cortisone, C21H28O5 is to be calculated.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of alkanes is CnH2n+2. Knowing this relationship and by working backward the degree of unsaturation in a molecule can be calculated. Each ring or a double bond in a molecule corresponds to a loss of two hydrogens from the formula of alkane. If the compound contains halogens, oxygen and/or nitrogen, then the number of halogens is to be added to the number of hydrogens, the number of oxygens to be ignored and number of the nitrogens is to be subtracted, in arriving at an equivalent hydrocarbon formula.
To calculate:
The degree of unsaturation in cortisone with molecular formula C21H28O5.

Answer to Problem 67AP
The degree of unsaturation in cortisone with molecular formula C21H28O5 is 8.
Explanation of Solution
Molecular formula of cortisone is C21H28O5. If oxygens are ignored then the formula becomes C21H28. A hydrocarbon with twenty one carbons will have the molecular formula C21H44. The compound given has eight pairs of hydrogens (H44-H28=16) less. So its degree of unsaturation is 8.
The degree of unsaturation in cortisone with molecular formula C21H28O5 is 8.
f) Atropine, C17H23NO3
Interpretation:
The degree of unsaturation in atropine, C17H23NO3 is to be calculated.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of alkanes is CnH2n+2. Knowing this relationship and by working backward the degree of unsaturation in a molecule can be calculated. Each ring or a double bond in a molecule corresponds to a loss of two hydrogens from the formula of alkane. If the compound contains halogens, oxygen and/or nitrogen, then the number of halogens is to be added to the number of hydrogens, the number of oxygens to be ignored and number of the nitrogens is to be subtracted, in arriving at an equivalent hydrocarbon formula.
To calculate:
The degree of unsaturation in atropine with molecular formula C17H23NO3.

Answer to Problem 67AP
The degree of unsaturation in atropine with molecular formula C17H23NO3 is 7.
Explanation of Solution
Molecular formula of atropine is C17H23NO3. If one hydrogen is subtracted for one nitrogen and oxygens are ignored the formula becomes C17H22. A hydrocarbon with seventeen carbons will have the molecular formula C17H36. The compound given has seven pairs of hydrogens (H36-H22=14) less. So its degree of unsaturation is 7.
The degree of unsaturation in atropine with molecular formula C17H23NO3 is 7.
Want to see more full solutions like this?
Chapter 7 Solutions
Organic Chemistry
- (2 pts) Why is O2 more stable as a diatomic molecule than S2?arrow_forwardDraw the Lewis structure for the polyatomic phosphite (PO¾³¯) a anion. Be sure to include all resonance structures that satisfy the octet rule. C I A [ ]¯arrow_forwardDecide whether these proposed Lewis structures are reasonable. proposed Lewis structure Is the proposed Lewis structure reasonable? Yes. :0: Cl C C1: 0=0: : 0 : : 0 : H C N No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* ☐ Yes. No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* Yes. ☐ No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | * If two or more atoms of the same element don't satisfy the octet rule, just enter the chemical symbol as many times as necessary. For example, if two oxygen atoms don't satisfy the octet rule, enter "0,0".arrow_forward
- Draw the Lewis structure for the polyatomic trisulfide anion. Be sure to include all resonance structures that satisfy the octet rule. с [ ] - Garrow_forward1. Calculate the accurate monoisotopic mass (using all 1H, 12C, 14N, 160 and 35CI) for your product using the table in your lab manual. Don't include the Cl, since you should only have [M+H]*. Compare this to the value you see on the LC-MS printout. How much different are they? 2. There are four isotopic peaks for the [M+H]* ion at m/z 240, 241, 242 and 243. For one point of extra credit, explain what each of these is and why they are present. 3. There is a fragment ion at m/z 184. For one point of extra credit, identify this fragment and confirm by calculating the accurate monoisotopic mass. 4. The UV spectrum is also at the bottom of your printout. For one point of extra credit, look up the UV spectrum of bupropion on Google Images and compare to your spectrum. Do they match? Cite your source. 5. For most of you, there will be a second chromatographic peak whose m/z is 74 (to a round number). For one point of extra credit, see if you can identify this molecule as well and confirm by…arrow_forwardPlease draw, not just describe!arrow_forward
- can you draw each step on a piece of a paper please this is very confusing to mearrow_forward> Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? esc ? A O O •If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. olo 18 Ar Explanation Check BB Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Accessibilityarrow_forwardName the structurearrow_forward
- > For each pair of substrates below, choose the one that will react faster in a substitution reaction, assuming that: 1. the rate of substitution doesn't depend on nucleophile concentration and 2. the products are a roughly 50/50 mixture of enantiomers. Substrate A Substrate B Faster Rate X CI (Choose one) (Choose one) CI Br Explanation Check Br (Choose one) C 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy A F10arrow_forwardHow to draw this mechanism for the foloowing reaction in the foto. thank youarrow_forwardPredict the major products of the following organic reaction: Some important notes: CN A? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. No reaction. Explanation Check Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Centerarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





