A circular. hot gas jet at
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Fundamentals of Heat and Mass Transfer
- Shown on the figure below is an open tank that contains water at 10 °C. Incoming water are from the top portion of the tank at 10 kilogram per second and at the left side water inlet section of the tank. Water discharges at the lower right section of the tank at a velocity of 4 meters per second. In order to maintain the water level in the tank at a height (h) of 10 meters, the inlet mass velocity of water situated at the left side section of the tank is Blank 1 kg / m²-s. *Express your answers in whole significant figure without decimal value and without unit* Water at 10 kg/sec Water inlet h = 10 m D = 50 mm D = 70 mm Water outlet at 4 m/secarrow_forwardAnswer the following problem. Show Complete Solution. View Image.arrow_forwardSuppose that as a body cools, the temperature of the surrounding medium increases because it completely absorbs the heat being lost by the body. Let T(t) and Tm (t) be the temperatures of the body and the medium at time t, respectively. If the initial temperature of the body is T1 and the initial temperature of the medium is T2, then it can be shown in this case that Newton's law of cooling is dT/dt = k(T - Tm ), k 0 is a constant. (a) The foregoing DE is autonomous. Determine the limiting value of the temperature T(t) as t→ o What is the limiting value of Tm (t) as t→o? (b) Verify your answers in part (a) by actually solving the differential equation. (c) Discuss a physical interpretation of your answers in part (a).arrow_forward
- A mass of 300kg of oil is cooled in 1 hour from 70 celcius to 35 celcius in a cooler consisting of a bank of tubes through which hot oil passes. Cooling water circulates around the outside of the tubes. Calculate the mass of cooling water required per hour if the water temp increases by 21 degrees celcius . Specific Heat of Oil - 2.0 kJ/kg deg C Specific Heat of Water - 4.186 kJ/kg deg Carrow_forward350 pipes are fixed as square in a pipe bundle used for condenser. PipeThe outer diameters are 8 mm and the steam at 0.2 bar is desired to be condensed on the pipes. pipe outer The surface temperature is kept constant at 30 °C. If the length of the pipes is 1.5 m, the heat transferred in the systemCalculate the amount of energy and the amount of condensed steamarrow_forwardFor a water flow over a steel surface, the temperature of water at a specific location was found to change with the vertical distance from the surface (y) up to a distance of 0.015 m as T(y) = 60 + 20y + tan(y), where temperature is in °C and y is in cm. The surface temperature and ambient temperature was measured as 60°C and 105°C, respectively. The thermal conductivity of steel and water are, respectively, 48 W/m-K and 0.6 W/m-K. What is the local convection coefficient at this location?arrow_forward
- A certain gas was produced as a product of a decomposition reaction in a reactor vessel. The reaction generated a certain amount of force that allowed the gas to move at 35 m/s. The diatomic product gas (gamma = 1.36) will be transported adiabatically in a commercial steel pipe with a diameter of 1 inch. If the exit of the reactor and start of the pipe has a same pressure of 6 atm abs. and temperature of 120 degrees Celsius. The molecular weight of the gas is 70.91 kg/kgmol. 2. What is the Mach No. at the entry of the pipe? 0.36 0.41 0.14 none of the given 0.25 0.52 0.63arrow_forwardPls answer q3(as I am still not sure whether or not I did q2 correctly)arrow_forwardplease expain to me how can I Calculate the net work done on the gas as it goes around the cyclic path ACDA.arrow_forward
- The ascending order of below given gasses in view of the thermal conductivity with molar mass is 1. Air 2. Argon 3. Helium (A) 2, 3, 1 (В) 3, 2, 1 (C) 2, 1, 3 (D) 1, 3, 2arrow_forward43% uo 7:52 * ZAIN IQ I. sheet No.3.pdf Homework 01-03 -2021 one-dimensional heat transfer and disregarding radiation, determine the rate of heat transfer through the wall. Q4/ Steam at Te1-320°C flows in a cast iron pipe (k=80W/m.°C) whose inner and outer diameters are D =5cm, and D=5.5cm, respectively. The pipe is covered with 3 cm thick glass wool insulation with k=0.05W/m.°C. Heat is lost to the surroundings at T02=5°C_by natural convection and radiation, with a combined heat transfer coefficient to be h,=18W/m.C. Taking the heat transfer coefficient inside the pipe to be h,=60W/m.C, determine the rate of heat loss from the steam per unit length of the pipe. Also determine the temperature drops across the pipe shell and the insulation. 05/ Determine the overall heat transfer coefficient U based on the outer surface of a D=2.5cm, and D=3.34 cm steel pipe (k=54.0W/m.°C) for the following conditions: inside and outside heat transfer coefficients are 1200W/m."C. and 2000W/m."C…arrow_forwardWhat is the role of differential equations in system modeling? How are differential equations used to represent dynamic systems, and what are the common techniques for solving them?arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning