Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 6.85P
(a)
To determine
The differential equation for predicting the plate temperature as a function of time.
(b)
To determine
The change in temperature with time if initial condition is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1000 cm^3 of air at an initial pressure of 1.10 × 10^5 Pa and temperature of 300 K undergoes the following changes: heat the air at constant pressureuntil its temperature reaches 390 K and then compress the air isothermallyuntil it returns to the initial volume of 1000 cm3and finally allow the air to cool so that its final pressure is 1.10 × 10^5 Pa.
i. Draw a P-V graph to represent the changes undergone by the air
ii. Calculate the maximum volume of the air.
iii. What is the maximum pressure of the air?
iv. State how the net work done on the air for the whole process can bedetermined
A food product containing 75% moisture content is being frozen. Estimate the specific heat of the product at -10 ° C when 85% of the water is frozen. The specific heat of the dry product is 2 kJ / (kg ° C). it is assumed that the specific heat of water at -10 ° C is the same as the specific heat of water at 0 ° C, and the specific heat of ice follows the function Cp es = 0.0062 Tbeku + 2.0649.
Cp of frozen product = .... kJ / kg ° C
Solve it correctly please. I will rate accordingly
Chapter 6 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 6 - The temperature distribution within a laminar...Ch. 6 - In flow over a surface, velocity and temperature...Ch. 6 - In a particular application involving airflow over...Ch. 6 - Water at a temperature of T=25C flows over one of...Ch. 6 - For laminar flow over a flat plate, the local heat...Ch. 6 - A flat plate is of planar dimension 1m0.75m. For...Ch. 6 - Parallel flow of atmospheric air over a flat plate...Ch. 6 - For laminar free convection from a heated vertical...Ch. 6 - A circular. hot gas jet at T is directed normal to...Ch. 6 - Experiments have been conducted to determine local...
Ch. 6 - A concentrating solar collector consists of a...Ch. 6 - Air at a free stream temperature of T=20C is in...Ch. 6 - The heat transfer rate per unit width (normal to...Ch. 6 - Experiments to determine the local convection heat...Ch. 6 - An experimental procedure for validating results...Ch. 6 - If laminar flow is induced at the surface of a...Ch. 6 - Consider the rotating disk of Problem 6.16. A...Ch. 6 - Consider airflow over a flat plate of length L=1m...Ch. 6 - A fan that can provide air speeds up to 50 m/s is...Ch. 6 - Consider the flow conditions of Example 6.4 for...Ch. 6 - Assuming a transition Reynolds number of 5105,...Ch. 6 - To a good approximation, the dynamic viscosity the...Ch. 6 - Prob. 6.23PCh. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Experiments have shown that the transition from...Ch. 6 - An object of irregular shape has a characteristic...Ch. 6 - Experiments have shown that, for airflow at T=35C...Ch. 6 - Experimental measurements of the convection heat...Ch. 6 - To assess the efficacy of different liquids for...Ch. 6 - Gases are often used instead of liquids to cool...Ch. 6 - Experimental results for heat transfer over a flat...Ch. 6 - Consider conditions for which a fluid with a free...Ch. 6 - Consider the nanofluid of Example 2.2. Calculate...Ch. 6 - For flow over a flat plate of length L, the local...Ch. 6 - For laminar boundary layer flow over a flat plate...Ch. 6 - Sketch the variation of the velocity and thermal...Ch. 6 - Consider parallel flow over a flat plate for air...Ch. 6 - Forced air at T=25C and V=10m/s is used to cool...Ch. 6 - Consider the electronic elements that are cooled...Ch. 6 - Consider the chip on the circuit board of Problem...Ch. 6 - A major contributor to product defects in...Ch. 6 - A microscale detector monitors a steady flow...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side is...Ch. 6 - Atmospheric air is in parallel flow...Ch. 6 - Determine the drag force imparted to the top...Ch. 6 - For flow over a flat plate with an extremely rough...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side with...Ch. 6 - As a means of preventing ice formation on the...Ch. 6 - A circuit board with a dense distribution of...Ch. 6 - On a summer day the air temperature is 27C and the...Ch. 6 - It is observed that a 230-mm-diameter pan of water...Ch. 6 - The rate at which water is lost because of...Ch. 6 - Photosynthesis, as it occurs in the leaves of a...Ch. 6 - Species A is evaporating from a flat surface into...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - An object of irregular shape has a characteristic...Ch. 6 - Prob. 6.60PCh. 6 - An object of irregular shape 1 m long maintained...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - A streamlined strut supporting a bearing housing...Ch. 6 - Prob. 6.67PCh. 6 - Consider the conditions of Problem 6.7, for which...Ch. 6 - Using the naphthalene sublimation technique. the...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Dry air at 32C flows over a wetted (water) plate...Ch. 6 - Dry air at 32C flows over a wetted plate of length...Ch. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - An expression for the actual water vapor partial...Ch. 6 - A mist cooler is used to provide relief for a...Ch. 6 - A wet-bulb thermometer consists of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.83PCh. 6 - An experiment is conducted to determine the...Ch. 6 - Prob. 6.85PCh. 6 - Consider the control volume shown for the special...Ch. 6 - Prob. 6S.2PCh. 6 - Prob. 6S.3PCh. 6 - Consider two large (infinite) parallel plates, 5...Ch. 6 - Prob. 6S.5PCh. 6 - Consider Couette flow for which the moving plate...Ch. 6 - A shaft with a diameter of 100 mm rotates at 9000...Ch. 6 - Consider the problem of steady, incompressible...Ch. 6 - Prob. 6S.11PCh. 6 - A simple scheme for desalination involves...Ch. 6 - Consider the conservation equations (6S.24) and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A food product containing 85% moisture content is being frozen. Estimate the specific heat of the product at -4 ° C when 60% of the water is frozen. The specific heat of the dry product is 2 kJ / (kg ° C). it is assumed that the specific heat of water at -10 ° C is the same as the specific heat of water at 0 ° C, and the specific heat of ice follows the function Cp ice = 0.0062 T frozen + 2.0649. Cp frozen product = AnswerkJ / kg ° C.arrow_forwardA food product with 85% moisture content is being frozen. Estimate the specific heat of the product at -10°C when 80% of the water is in a frozen state. The specific heat of dry product solid is 2 kJ/(kg °C). Assume specific heat of water at -10°C is similar to specific heat of water at 0°C. And the heat of the types of ice follow the function of Cp ice = 0.0062 Tfrozen + 2.0649. Cp frozen product = ... kJ/kg °C.arrow_forwardI need help on thisarrow_forward
- An perfect gas of a specific composition Molar weight is 25 grams per mole and specific heat is 3 grams per mole. Y is initially at 200kPa and 2m3 in volume. Heat transmission resulted in a twofold increase in volume. Calculate how much heat was transferred if it was subjected to a process defined by 'n=1', "n=Cp/Cv," or "n=2."arrow_forward3. A metallic rod 20 cm long is heated to a uniform temperature of 100° C. At t = 0 the ends of the bar are plunged into an ice bath at 0° C and thereafter maintained at this temperature. Find an expression for the temperature u(x, t) if the bar is made of cast iron. Material a (cm²/s) Silver 1.71 Copper 1.14 Aluminum 0.86 Cast iron 0.12 Granite 0.011 Brick 0.0038 Water 0.00144 Table 1: Thermal Diffusivity Constants for Common Materialsarrow_forwardThe combustion in a gasoline engine may be approximated by a constant volume heat addition process, and the contents of the combustion chamber both before and after combustion as air. The conditions are 1.80 MPa and 450°C before the combustion and 1500°C after it. Determine the pressure at the end of the combustion process.arrow_forward
- A tank contains 100 gallons of brine. Three gallons of brine, each containing 2 pounds of dissolved salt, enter the tank each minute, and the mixture, assumed uniform, leaves at the rate of 2 gallons per minute. If the salt concentration in the tank is 1.6 pounds per gallon at the end of 1 hour, what was the initial concentration?arrow_forwardIn thermodynamics, a distinction is made between functions that are state functions and others that are are not state functions. Explain what the term state function means and give an example of one state function and an example of a thermodynamic function that is not a state function. Illustrate with equations for isobaric, isochoric and adiabatic change of temperature of an ideal gas, what it means for changes in both types ofthermodynamic functions and comment on it.arrow_forwardA 54g54g copper calorimeter contains 80cm380cm3 at 20∘C20∘C. A very cold 110g110g copper cylindrical sample is dropped into the water causing the water to partially freeze, with 5cm35cm3 being converted to ice. The final temperature of the system is 0∘C0∘C. What is the initial temperature in Kelvins of the cylindrical sample?arrow_forward
- Hi! Please I need a solution in 15 minutesarrow_forwardV. W. Th To %3D Room temperature T = 293 K V V. Vp The gas volume changes from Vp to Va at constant temperature T. The cartoon on the right shows a piston of gas undergoing this compression while submerged in a container of room temperature water, which acts as a reservoir. The initial state of this process is a piston containing 2 moles of a monatomic gas at Tc = 293 K (room temperature water) and volume V = a 1.0 m. The gas is compressed until V, = 0.2 m. During the compression, the heat bath of room temperature water maintains the temperature of the gas at T 293 K. Calculate the work done in joules by the gas during this process. Do not include units in your answer. Be careful to use the standard sign convention for work done by the gas. Write your numerical answer in normal form as described above in the instructions to this worksheet.arrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY