Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 6.54P
The rate at which water is lost because of evaporation from the surface of a body of water may be determined by measuring the surface recession rate. Consider a summer day for which the temperature of both the water and the ambient air is 305 K and the relative humidity of the air is 40%. If the surface recession rate is known to be 0.1 mm/h, what is the rate at which mass is lost because of evaporation per unit surface area? What is the convection
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
From an open water surface with air temperature 22°C, relative humidity is 40% and wind speed is 3 m/s, all measured at height 2 m above the water surface. Assume a roughness height of 0.03 cm. The net radiation is 200 W/m^2. Cp = 1005 J/kg-K
A. Calculate the latent heat of vaporization (J/kg)
B. Calculate the evaporation using Energy Balance Method (mm/day)
C. Calculate the saturation deficit of the vapor pressure (Pa)
D. Calculate the evaporation using Priestley-Taylor Method (mm/day)
in convection heat transfer, what happen to the heat transfer coefficient if the viscosity of the fluid decrease?
Net radiation at the Laguna Lake is 185 W/m2 at noon on February 14th. Air temperature is 27.5°C, relative humidity is 70%, and wind speed is 1.8 m/s at 2 m. – Determine the open water evaporation rate in mm/d using the combined method
Chapter 6 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 6 - The temperature distribution within a laminar...Ch. 6 - In flow over a surface, velocity and temperature...Ch. 6 - In a particular application involving airflow over...Ch. 6 - Water at a temperature of T=25C flows over one of...Ch. 6 - For laminar flow over a flat plate, the local heat...Ch. 6 - A flat plate is of planar dimension 1m0.75m. For...Ch. 6 - Parallel flow of atmospheric air over a flat plate...Ch. 6 - For laminar free convection from a heated vertical...Ch. 6 - A circular. hot gas jet at T is directed normal to...Ch. 6 - Experiments have been conducted to determine local...
Ch. 6 - A concentrating solar collector consists of a...Ch. 6 - Air at a free stream temperature of T=20C is in...Ch. 6 - The heat transfer rate per unit width (normal to...Ch. 6 - Experiments to determine the local convection heat...Ch. 6 - An experimental procedure for validating results...Ch. 6 - If laminar flow is induced at the surface of a...Ch. 6 - Consider the rotating disk of Problem 6.16. A...Ch. 6 - Consider airflow over a flat plate of length L=1m...Ch. 6 - A fan that can provide air speeds up to 50 m/s is...Ch. 6 - Consider the flow conditions of Example 6.4 for...Ch. 6 - Assuming a transition Reynolds number of 5105,...Ch. 6 - To a good approximation, the dynamic viscosity the...Ch. 6 - Prob. 6.23PCh. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Experiments have shown that the transition from...Ch. 6 - An object of irregular shape has a characteristic...Ch. 6 - Experiments have shown that, for airflow at T=35C...Ch. 6 - Experimental measurements of the convection heat...Ch. 6 - To assess the efficacy of different liquids for...Ch. 6 - Gases are often used instead of liquids to cool...Ch. 6 - Experimental results for heat transfer over a flat...Ch. 6 - Consider conditions for which a fluid with a free...Ch. 6 - Consider the nanofluid of Example 2.2. Calculate...Ch. 6 - For flow over a flat plate of length L, the local...Ch. 6 - For laminar boundary layer flow over a flat plate...Ch. 6 - Sketch the variation of the velocity and thermal...Ch. 6 - Consider parallel flow over a flat plate for air...Ch. 6 - Forced air at T=25C and V=10m/s is used to cool...Ch. 6 - Consider the electronic elements that are cooled...Ch. 6 - Consider the chip on the circuit board of Problem...Ch. 6 - A major contributor to product defects in...Ch. 6 - A microscale detector monitors a steady flow...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side is...Ch. 6 - Atmospheric air is in parallel flow...Ch. 6 - Determine the drag force imparted to the top...Ch. 6 - For flow over a flat plate with an extremely rough...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side with...Ch. 6 - As a means of preventing ice formation on the...Ch. 6 - A circuit board with a dense distribution of...Ch. 6 - On a summer day the air temperature is 27C and the...Ch. 6 - It is observed that a 230-mm-diameter pan of water...Ch. 6 - The rate at which water is lost because of...Ch. 6 - Photosynthesis, as it occurs in the leaves of a...Ch. 6 - Species A is evaporating from a flat surface into...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - An object of irregular shape has a characteristic...Ch. 6 - Prob. 6.60PCh. 6 - An object of irregular shape 1 m long maintained...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - A streamlined strut supporting a bearing housing...Ch. 6 - Prob. 6.67PCh. 6 - Consider the conditions of Problem 6.7, for which...Ch. 6 - Using the naphthalene sublimation technique. the...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Dry air at 32C flows over a wetted (water) plate...Ch. 6 - Dry air at 32C flows over a wetted plate of length...Ch. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - An expression for the actual water vapor partial...Ch. 6 - A mist cooler is used to provide relief for a...Ch. 6 - A wet-bulb thermometer consists of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.83PCh. 6 - An experiment is conducted to determine the...Ch. 6 - Prob. 6.85PCh. 6 - Consider the control volume shown for the special...Ch. 6 - Prob. 6S.2PCh. 6 - Prob. 6S.3PCh. 6 - Consider two large (infinite) parallel plates, 5...Ch. 6 - Prob. 6S.5PCh. 6 - Consider Couette flow for which the moving plate...Ch. 6 - A shaft with a diameter of 100 mm rotates at 9000...Ch. 6 - Consider the problem of steady, incompressible...Ch. 6 - Prob. 6S.11PCh. 6 - A simple scheme for desalination involves...Ch. 6 - Consider the conservation equations (6S.24) and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- How is storage modulus and loss modulus relate with diffussivity of a drug molecule pass through a gel? Does higher storage modulus means lower difussivity?arrow_forwardA bioengineer working at chemical company intends to dry an insoluble wet granular material in a pan 0.6 x 0.6 m and 3 cm deep. The material is at the same dept in the pan, whereas the sides and the bottom can be considered to be insulated. Heat transfer is by convection from an air stream flowing parallel to the surface at a velocity of 10 m/s. The air is at 65.6°C and has a humidity of 0.010 kg H2O/kg dry air. Calculate the rate of drying for constant-rate periodarrow_forwardOne of the major concern in the cold weather condition is the condensation of the moisture present in the air. Usually the temperature inside a house is not uniform and the condensation frequently takes place at the region of lower air temperature especially on the inner surfaces of the windows. If the house contains air at 15°℃ and relative humidity of 75%, what minimum temperature should be maintained to avoid the condensation?arrow_forward
- Determine the evaporation rate when a container contains hot water and the surface temperature of the container is 75◦C is placed in an air stream that has a mass fraction of water equal to 0.25. For the water over pan If the average mass transfer coefficient is gm,H2O = 0.370 kg/m2·s and the container has a surface area of 0.16 m2 Please make it fast , if not sure skip ,don't give wrong , may downvotearrow_forwardCalculate the time taken for a 7 um radius cloud droplet to grow via condensation into a 3500 um rain droplet. Assume a super-saturation of 1.55%, a water vapour density of 3 g m-3, and a water vapour diffusion coefficient in dry air of D=24 x10-6 m2 S -1 PLEASE SHOW CALCULATIONarrow_forwardIf the air temperature at 18:00h is 8 C, and the air adjacent to the surface has a relative humidity of 70%, at what time will condensation occur if the evening cooling rate is 1 C/hour? Will the condensation be in the form of dew or frost?arrow_forward
- Using the equations for the Barometric Law and temperature decrease from adiabatic expansion (found in the lecture, calculate the atmospheric temperature at 5 km. Assume dry air, i.e. gamma equal to 1.4, temperature at the surface is 288 K. Group of answer choices These laws cannot predict the temperature at 5 km. 288 K 148 K 243 Karrow_forwardCalculate theoretically the relative humidity of moist air at a dry-bulb temperature of 15.2019123751 degree C and a moisture content of 0.00734 kgper kg dry air for a barometric pressure of (a) 101.325 kPa and (b) 95 kPa.kindly graph it on the given imagearrow_forwardAn open tank, 6 mm in diameter, contains 1 mm deep layer of benzene (Mol wt = 78) at its bottom. The vapour pressure of benzene in the tank is 13.15 kN/m2 and its diffusion takes place through a stagnant air film 2.5 mm thick, At the operating temperature of 20°C, the diffusivity of benzene in the tank is 8.0 x 10-6 m2/s. If the benzene has a density of 880 kg/m³, calculate the time taken for the entire benzene to evaporate. Take atmospheric pressure as 101.3 kN/m² and neglect any resistance to diffusion of benzene beyond the air film. %3Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license