Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6S.3P
(a)
To determine
The temperature distribution in the oil.
(b)
To determine
The rate of heat transfer from the bearing and the power required to rotate the bearing.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Working for an engineering consultancy firm, your knowledge of fluid dynamics is required to design a new safety feature for a high-pressure air line in a factory. The air line takes the form of a cylindrical pipe of diameter 150 mm, which is designed to operate between 0.45 MPa and 0.76 MPa. At the end of the pipe a bursting disk is placed so that, if the pressure exceeds the maximum operating pressure, the air is vented to atmosphere rather than over-pressuring the chemical reaction vessel (Figures 4a and 4b). In this question, you should treat the flow as quasione-dimensional and inviscid. The air in the surrounding atmosphere is at 101 kPa and 298 K.
You have a choice of five disks which can withstand the following forces across them before bursting: 10.5 kN, 11.0 kN, 11.5 kN, 12.0 kN, 12.5 kN. Which of these bursting disks would you recommend, and why?
In seconds
A sphere, 1 m internal diameter and 6mm wall thickness, is to be pressure-tested for safety purposes with water as the pressure medium. Assuming that the sphere is initially filled with water at atmospheric pressure, what extra volume of water is required to be pumped in to produce a pressure of 3 MN/m2 gauge? For water, K = 2.1 GN/m2. For the material of the sphere E = 200 GN/m2, v = 0.3 and the yield stress 0, in simple tension = 280 MN/m2.
a. 0.948 x 10-3 m3b. 0.648 x 10-3 m3c. 0.848 x 10-3 m3d. 0.748 x 10-3 m3
Chapter 6 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 6 - The temperature distribution within a laminar...Ch. 6 - In flow over a surface, velocity and temperature...Ch. 6 - In a particular application involving airflow over...Ch. 6 - Water at a temperature of T=25C flows over one of...Ch. 6 - For laminar flow over a flat plate, the local heat...Ch. 6 - A flat plate is of planar dimension 1m0.75m. For...Ch. 6 - Parallel flow of atmospheric air over a flat plate...Ch. 6 - For laminar free convection from a heated vertical...Ch. 6 - A circular. hot gas jet at T is directed normal to...Ch. 6 - Experiments have been conducted to determine local...
Ch. 6 - A concentrating solar collector consists of a...Ch. 6 - Air at a free stream temperature of T=20C is in...Ch. 6 - The heat transfer rate per unit width (normal to...Ch. 6 - Experiments to determine the local convection heat...Ch. 6 - An experimental procedure for validating results...Ch. 6 - If laminar flow is induced at the surface of a...Ch. 6 - Consider the rotating disk of Problem 6.16. A...Ch. 6 - Consider airflow over a flat plate of length L=1m...Ch. 6 - A fan that can provide air speeds up to 50 m/s is...Ch. 6 - Consider the flow conditions of Example 6.4 for...Ch. 6 - Assuming a transition Reynolds number of 5105,...Ch. 6 - To a good approximation, the dynamic viscosity the...Ch. 6 - Prob. 6.23PCh. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Experiments have shown that the transition from...Ch. 6 - An object of irregular shape has a characteristic...Ch. 6 - Experiments have shown that, for airflow at T=35C...Ch. 6 - Experimental measurements of the convection heat...Ch. 6 - To assess the efficacy of different liquids for...Ch. 6 - Gases are often used instead of liquids to cool...Ch. 6 - Experimental results for heat transfer over a flat...Ch. 6 - Consider conditions for which a fluid with a free...Ch. 6 - Consider the nanofluid of Example 2.2. Calculate...Ch. 6 - For flow over a flat plate of length L, the local...Ch. 6 - For laminar boundary layer flow over a flat plate...Ch. 6 - Sketch the variation of the velocity and thermal...Ch. 6 - Consider parallel flow over a flat plate for air...Ch. 6 - Forced air at T=25C and V=10m/s is used to cool...Ch. 6 - Consider the electronic elements that are cooled...Ch. 6 - Consider the chip on the circuit board of Problem...Ch. 6 - A major contributor to product defects in...Ch. 6 - A microscale detector monitors a steady flow...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side is...Ch. 6 - Atmospheric air is in parallel flow...Ch. 6 - Determine the drag force imparted to the top...Ch. 6 - For flow over a flat plate with an extremely rough...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side with...Ch. 6 - As a means of preventing ice formation on the...Ch. 6 - A circuit board with a dense distribution of...Ch. 6 - On a summer day the air temperature is 27C and the...Ch. 6 - It is observed that a 230-mm-diameter pan of water...Ch. 6 - The rate at which water is lost because of...Ch. 6 - Photosynthesis, as it occurs in the leaves of a...Ch. 6 - Species A is evaporating from a flat surface into...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - An object of irregular shape has a characteristic...Ch. 6 - Prob. 6.60PCh. 6 - An object of irregular shape 1 m long maintained...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - A streamlined strut supporting a bearing housing...Ch. 6 - Prob. 6.67PCh. 6 - Consider the conditions of Problem 6.7, for which...Ch. 6 - Using the naphthalene sublimation technique. the...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Dry air at 32C flows over a wetted (water) plate...Ch. 6 - Dry air at 32C flows over a wetted plate of length...Ch. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - An expression for the actual water vapor partial...Ch. 6 - A mist cooler is used to provide relief for a...Ch. 6 - A wet-bulb thermometer consists of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.83PCh. 6 - An experiment is conducted to determine the...Ch. 6 - Prob. 6.85PCh. 6 - Consider the control volume shown for the special...Ch. 6 - Prob. 6S.2PCh. 6 - Prob. 6S.3PCh. 6 - Consider two large (infinite) parallel plates, 5...Ch. 6 - Prob. 6S.5PCh. 6 - Consider Couette flow for which the moving plate...Ch. 6 - A shaft with a diameter of 100 mm rotates at 9000...Ch. 6 - Consider the problem of steady, incompressible...Ch. 6 - Prob. 6S.11PCh. 6 - A simple scheme for desalination involves...Ch. 6 - Consider the conservation equations (6S.24) and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- This is a resubmission question. I need assistance in solving this experiment. fluid flowing in the pipe is AIR at 15degrees celsius.arrow_forwardThe man shown in (Figure 1) blows air through the 3-mm diameter straw with a velocity of 2.8 m/s. Assume fully developed flow occurs along the straw. The temperature of the air is 20°C. Figure -225 mm- 1 of 1 > T Part A Determine the force his lips exert on the straw to hold it in place. Express your answer using three significant figures and include the appropriate units. P-6.673 HA Provide Feedback N ? ubmit Previous Answers Request Answer X Incorrect; Try Again; 3 attempts remainingarrow_forwardA thermometer is being designed for a process in which the temperature varies from 0 to 180 °C; from experience it is known that the process temperature, when it gets out of control, reaches up to 240 ° C. Considering that only the bulb is in contact with the part inside the equipment, what should be the volume of the safety vial? It is known that the bulb has a length of 1.2 cm and a diameter of 0.5 cm; the capillary has a length of 20 cm and the scale of the thermometer is -10 to 190 ° C. Consider that the coefficient of volumetric expansion for mercury is 1.82×10−4 ° C− 1arrow_forward
- 2. A large sheet of glass 2” thick is initially at 300oF throughout. It is plunged into a stream of running water having a temperature of 60oF. How long will it take to cool the glass to an average temperature of 100oF. For glass k = 0.40BTU/ft-hroF, ρ = 155 lb/ft3 and Cp = 0.20 BTU/lboF.arrow_forwardA large plate is pulled at a constant speed of U = 4 m/s over a fixed plate on 5-mm-thick engine oil film at 20°C. Assuming a half-parabolic velocity profile in the oil film, as sketched, determine the shear stress developed on the upper plate and its direction. What would happen if a linear velocity profile were assumed?arrow_forwardWorking for an engineering consultancy firm, your knowledge of fluid dynamics is required to design a new safety feature for a high-pressure air line in a factory. The air line takes the form of a cylindrical pipe of diameter 150 mm, which is designed to operate between 0.45 MPa and 0.76 MPa. At the end of the pipe a burs9ng disk is placed so that, if the pressure exceeds the maximum opera9ng pressure, the air is vented to atmosphere rather than over-pressuring the chemical reac9on vessel (Figures 4a and 4b). In this ques9on, you should treat the flow as quasione-dimensional and inviscid. The air in the surrounding atmosphere is at 101 kPa and 298 K. a) You have a choice of five disks which can withstand the following forces across them before burs9ng: 10.5 kN, 11.0 kN, 11.5 kN, 12.0 kN, 12.5 kN. Which of these burs9ng disks would you recommend, and why? b) Due to an over-pressurisa9on of the air line, the disk bursts at 9me t = 0. At what pressure in the air line will this occur? c)…arrow_forward
- Laminar flow takes place between parallel plates 10 mm apart. The plates are inclined at 45° with the horizontal. For oil of viscosity 0.9 kg/m.s and mass density is 1260 kg/m³, the pressure at two points 1.0 m vertically apart are 80 kN/m2 and 250 kN/m2 when the upper plate moves at 2.00 m/s velocity relative to the lower plate but in opposite direction to flow determine velocity distribution, max. velocity and shear stress on the top plate.arrow_forwardQuestion 1: The plate in side Figure rests on top of the thin film of water, which is at a temperature of 25° C. If a pressure difference occurs between A and B, and a small force F is applied to the plate, the velocity profile across the thickness of the water can be described as u = (40y - 800y2) m/s, where y is in meters. Determine the shear stress acting on the fixed surface and on the bottom of the plate. 10 mm 0.32 m/sarrow_forwardThe diagram shows a schematic for a thermometer based on the expansion of some fluid. There is a spherical reservoir of the fluid, with radius R, which is connected via a tube to a vertical section, with a circular cross section, radius r. a. assuming r << R, show that the change in fluid level in the tube is given by: 4 BR³ AT AL = 3 p² Where AT is the change in temperature and is the volumetric expansion coefficient of the fluid b. what properties should the system have to be most sensitive?arrow_forward
- A nuclear reactor is cooled by liquid sodium. The liquid sodium has the following properties: dynamic viscosity = 0.41 mPa·s, specific heat capacity = 1.2 kJ/kgK, thermal conductivity 82 W/mK. Which of the following statements is correct for this scenario? please explain A The thermal boundary layer is thicker than the hydraulic boundary layer. B Heat is transferred through the fluid more easily than momentum. C The velocity varies significantly from the surface to the thickness of the thermal boundary layer. D The hydraulic boundary layer is thicker than the thermal boundary layer.arrow_forward5. A 50 mm diameter shaft rotates in a sleeve of 50.3 mm internal diameter and length 100 mm. In the annulus space, a lubricating oil of viscosity u = 0.11 Pa-s is filled. Calculate the rate of heat generation when the shaft rotates at 200 rpm. 6. A glass capillary tube of diameter 0.3 mm and length 60 mm is dipped in a water having surface tension 0.017 N/m. The contact angle between the liquid and the tube wall is 40°. Will the water overflow through the tube? If not, comment on the nature and radius of meniscus. 7. Determine the absolute pressure of air flowing in a circular duct using an inclined tube manometer, as shown in Fig. 2.49. The barometer reading is 740 mm Hg. Air 150 mm 200 mím Water 30° Fig. 2.49arrow_forwardProblem 3: IV Bag A 3 cm long needle at the bottom of a tube connected to an IV bag is used to inject a 125 mL of saline solution located h = 70 cm above the needle over a one hour period. The viscosity of the saline solution is 1.1 mPa.s and its density is 970 kg/m³. You may assume the resistance to flow and fluid speed in the bag and the tube is negligible - only the resistance across the needle needs to be taken into account. A. If the vein's gauge pressure is 5 mmHg, what will be the difference in the input and output pressures across the needle in both mmHg and Pa? B. What is the flow rate of the fluid, in S.I. unis? C. What is the radius of this needle in mm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license