Dry air at
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Applied Fluid Mechanics (7th Edition)
Mechanics of Materials
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Engineering Mechanics: Statics
Introduction to Heat Transfer
Applied Statics and Strength of Materials (6th Edition)
- A pipe 30 m long with an outer diameter of 75 mm is used to deliver steam at a rate of 1500 kg / hour. The vapor pressure is 198.53 kPa entering the pipe with a quality of 98%. The pipe needs to be insulated with a thermal conductivity of 0.2 W / (m K) so that the quality of the steam will only slightly decrease to 95%. The outer surface temperature of the insulation is assumed to be 25 ° C. Ignore resistance conductive of the pipe material and it is assumed that there is no pressure drop in the pipe. a. Determine the enthalpy of incoming vapor = Answer kJ / kg. b. Determine the enthalpy of steam coming out = Answer kJ / kg. c. Determine the vapor heat change / loss along the flow = Answer watt. d. Specify the minimum required insulation thickness = Answer cm.arrow_forwardIn an experiment, the temperature of a hot gas stream is to be measured by a thermocouple with a spherical junction. Due to the nature of this experiment, the response time of the thermocouple to register 69 percent of the initial temperature difference must be within 5 s. The properties of the thermocouple junction are k = 35 W/m•K, ρ = 8500 kg/m3, and cp = 320 J/kg•K. If the heat transfer coefficient between the thermocouple junction and the gas is 250 W/m2•K, determine the diameter of the junction.arrow_forwardA spherical pellet (ρ =1000 kg/m3 , c = 1000 J/(kg⋅K)) with a radius ro = 1 cm is cooled from an initial temperature of 200°C by immersion in water bath at 10°C with a convection coefficient h = 100 W/(m2 K). Evaluate the temperature in the center and on the surface of the pellet after 10 s of immersion for two cases: (a) Thermal conductivity of the pellet k = 0.1 W/(m⋅K) (b) Thermal conductivity of the pellet k = 5 W/(m⋅K)arrow_forward
- The convection coefficient for a hot a fluid flowing over a cool surface is 150 W/m^2. The fluid temperature is 410 K and the surface is held at 290 K. Determine the heat transfer per unit surface area from the fluid to the surface.arrow_forwardIn a dairy operation, milk at a flow rate of 0.25m3/hr and a cow-body temperature of 38.6°C must be chilled to a safe-to- store temperature of 13°C. Cold water at 2.2°C is available at a flow rate of 0.94m3/hr. The density and specific heat of milk are 1030 kg/m3 and 3860 J/kg.K, respectively. The density and specific heat of water is 1000 kg/m3 and 4187 J/kg.K. The chilling process is done by a double pipe counter-flow exchanger with an overall heat transfer coefficient U=1000 W/m2.K. The pipe of the heat exchanger has a 50-mm diameter with negligible thickness. Determine the pipe length L required. Select one: O a. 2.28 m O b. 4.28 m O c. 3.28 m O d. 1.28 marrow_forwardAn average person body surface is approximately 2.0 m². Its skin temperature is 33°C. The convection heat transfer coefficient of a clothed person walking is expressed as h = 9.0 V0.53 for velocities 0.5 m/s< V <2 m/s, where V is the walking velocity. Assuming the average surface temperature of the clothed person to be 30°C , determine the rate of heat loss from an averaged man walking in Chill air at 7 °C: T; (a) 0.5 m/s (b) 1.0 m/s (c) 1.5 m/s (d) 2.0 m/s Airarrow_forward
- Humans are able to control their rates of heat production and heat loss to maintain a nearly constant core temperature of Tc = 37°C under a wide range of environmental conditions. This process is called thermoregulation. From the perspective of calculating heat transfer between a human body and its surroundings, we focus on a layer of skin and fat, with its outer surface exposed to the environment and its inner surface at a temperature slightly less than the core temperature, Ti = 35°C = 308 K. Consider a person with a skin/fat layer of thickness L = 2 mm and effective thermal conductivity k = 0.3 Wm ⋅ K. The person has a surface area A = 1.8 m2 and is dressed in a bathing suit. The emissivity of the skin is ε = 0.95.a). When the person is in still air at T∞ = 308 K, what is the skin surface temperature and rate of heat loss to the environment? Convection heat transfer to the air is characterized by a free convection coefficient of h = 2 W?2 ⋅ Kb). When the person is in water at T∞ =…arrow_forwardA fluid flows over a plane surface 1 m by 1 m with a bulk temperature of 50°C. The temperature of the surface is 20°C. The convective heat transfer coefficient is 2000 W⁄m2 − °C. Determine the heat transfer rate from the fluid to the surface.arrow_forwardA coke packed humidifier is to be designed to cool 3,000 cfm of saturated air from 150 to 75 °F at barometric pressure. Cooling water at 50°F will be allowed to heat up to 100°F. Gas velocity will be 3,000 lb of dry air per sq ft of total cross section. Water velocity is 1,200 lb/h per sq ft of total cross section. Over-all coefficient of sensible heat transfer from air to water = 300 BTU/h ft³.°F. Calculate the height and diameter of cooling tower required. Round your answers to the nearest 0.05 ft.arrow_forward
- A pipe 30 m long with an outer diameter of 75 mm is used to deliver steam at a rate of 1500 kg / hour. The steam pressure is 198.53 kPa entering the pipe with a quality of 98%. The pipe that needs to be insulated with a thermal conductivity of 0.2 W / (m K) so that the quality of the steam only decreases slightly to 95%. The temperature of the outer surface of the insulation is assumed to be 25 ° C. The conductive of the pipe material and the situation of no pressure drop in the pipe. A. Determine the enthalpy of incoming vapor = Answer kJ / kg. b. Determine the enthalpy of steam that comes out = Answer kJ / kg. c. Determine the change / loss of steam heat along the flow = Answer watt. d. Determine the minimum required insulation thickness = Answer cm.arrow_forwardThe temperature of a gas stream is measured by a thermocouple whose junction can be approximated as a 1-mm-diameter sphere. Take the junction’s properties as: k of 32 W/m K, density of 8.2 kg/m^3, c of 300 J/Kg K. On its surface, the overall heat transfer coefficient is 200 W/m^2 K. Neglect any conduction loss from the sphere to other parts of the thermocouple. Create a plot of measurement error as a function of time for the thermocouple.arrow_forwardThe temperature of a gas stream is measured by a thermocouple whose junction can be approximated as a 1-mm-diameter sphere. Take the junction’s properties as: k of 32 W/m K, density of 8.2 kg/m^3, c of 300 J/Kg K. On its surface, the overall heat transfer coefficient is 200 W/m^2 K. Neglect any conduction loss from the sphere to other parts of the thermocouple. Create a plot of measurement error as a function of time for the thermocouple, expressed as a fraction of the initial temperature difference.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning