A major contributor to product defects in electronic modules relates to stresses induced during thermal cycling (intermittent heating and cooling). For example, in circuit cards having active and passive components with materials of different thermal expansion coefficients, thermal stresses are the principal source of failure in component joints, such as soldered and wired connections. Although concern is generally for fatigue failure resulting from numerous excursions during the life of a product, it is possible to identify defective joints by performing accelerated thermal stress tests before the product is released to the customer. In such cases, it is important to achieve rapid thermal cycling to minimize disruptions to production schedules.
A manufacturer of circuit cards wishes to develop an apparatus for imposing rapid thermal transients on the cards by subjecting them to forced convection characterized by a relation of the form
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Fundamentals of Heat and Mass Transfer
- Answer correctly and quickly as possible please.arrow_forwardTwo balls (A and B) are made of the same material, heated to the same temperature and allowed to cool in the same medium "same h", when the diameter ratio (D/Dg = 2.0), then the cooling rate ratio (Q/QR) will bearrow_forwardQuestion 2: The composite wall of an oven consists of three materials, two of which are of known thermal conductivity, kA 20 W/m K and kC50 W/m K, and known thickness, LA 0.30 m and LC 0.15 m. The third material, B, which is sandwiched between materials A and C, is of known thickness, LB 0.15 m, but unknown thermal conductivity kB. Under steady-state operating conditions, measurements reveal an outer surface temperature of Ts,o 20°C, an inner surface temperature of Ts,i 600°C, and an oven air temperature of T 800°C. The inside convection coefficient h is known to be 25 W/m2 K. What is the value of kB?arrow_forward
- The composite wall of a furnace consists of three different materials, two of which have known thermal conductivity (ka = 20 W/m°C and kc = 50 W/m°C) and thicknesses La = 0.30 m and Lb = 0.15 m. The third material (B) is between A and C, with a thickness of 0.15 m, but its thermal conductivity (kb) is unknown. Under steady-state operating conditions, measurements reveal a temperature of 20 °C on the external surface, 600 °C on the internal surface, and a furnace ambient temperature of 800 °C. The internal convection coefficient is 25 W/m²°C. What is the value of kb?arrow_forwardThermal conductivity for pure aluminum: kal = 238 W/m⋅K ; Thermal conductivity for glass: kgl = 1.4 W/m⋅K.arrow_forwardShow detailed step by step solution. Topic: thermodynamicsarrow_forward
- A mechanic needs to remove a tight fitting pin of material A from a hole in a block made of material B. The machinist heats both the pin and the block to the same high temperature and removes the pin easily. What statement relates the coefficient of thermal expansion of material A to that of material B?arrow_forwardThe principles of Newton’s Law of Cooling. You can imagine and create your own data. Discuss the nature and origin of the four (4) types of coffee where it originates. Various settings, formulations, containers, and the number of trials will be properly discussed in their methodology. Once the experimentation has been done, the thermal coefficient shall be computed and recorded. The temperature coefficient acquired at t=0 and t= 5 mins, will be tested at t = 6,7,8,9 and 10 minutes.arrow_forwardPlease provide the answers with appropriate images and stepsarrow_forward
- The TPD method measures temperature elevations in a tissue region during a heating pulse and its later temperature decay after the pulse. It is then using the Pennes bioheat equation to perform a curve fitting to determine the local blood perfusion rate. If the TPD probe is placed in the vicinity of very large blood vessel, will the TPD technique provide an accurate measurement of the local blood perfusion in the vicinity of this large blood vessel? Explain briefly. (Hint: Is the Pennes bioheat equation accurate surrounding a large blood vessel?)arrow_forwardPlease answer question 1 please show me step by step.arrow_forwardDefine the thermal conductivities of some materials at room conditionsarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning