Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6S.11P
To determine
The species concentration distribution.
The species flux at the upper surface.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q6/ It is required to enhance the wear resistance of steel part by Nitriding process. To perform such task,
the nitrogen surface concentration must be increased to 0.5 wt% while the initial value was 0.002 wt%.
The nitrogen gas with constant temperature is provided from external source. To optimize the diffusion
process; the subsurface layer of 0.4 mm depth, must has nitrogen content of 0.1 wt%. Find out the
required process temperature to accomplish this treatment at 1.6 hour. The values of activation energy
and preexponential for the nitrogen in iron at this temperature are 76,150 J/mol and 3 x 107 m2/s,
respectively.
erf(z)
erf(z)
erf(z)
0.55
0.5633
1.3
0.9340
0.025
0.0282
0.60
0.6039
1.4
0.9523
0.05
0.0564
0.65
0.6420
1.5
0.9661
0.10
0.1125
0.70
0.6778
1.6
0.9763
0.15
0.1680
0.75
0.7112
1.7
0.9838
0.20
0.2227
0.80
0.7421
1.8
0.9891
0.25
0.2763
0.85
0.7707
1.9
0.9928
0.30
0.3286
0.90
0.7970
2.0
0.9953
0.35
0.3794
0.95
0.8209
2.2
0.9981
0.40
0.4284
1.0
0.8427
2.4
0.9993
0.45
0.4755…
What is Newton’s law of flow and its application?
Differentiate flow properties and corresponding rheograms between Newtonian and non-Newtonian materials.
Define and show calculations on the effects of temperature on viscosity and recognize similarities between viscous flow and diffusion relative to temperature.
What are the rheologic behaviors with their corresponding rheograms.
can you also indicate some references
Consider a thin-walled, fi xed-volume container of volume V that holds an ideal gas at constant temperature T. It can be shown by dimensional analysis that the number of particles striking the walls of the container per unit area per unit time is given by nv-/4, where as usual n is the particle number density. The container has a small hole of area A in its surface through which the gas can leak slowly. Assume that A is much less than the surface area of the container. (a) Assuming that the pressure inside the container is much greater than the outside pressure (so that no gas will leak from the outside back in), estimate the time it will take for the pressure inside to drop to half the initial value. Your answer should contain A, V, and the mean molecular speed v-. (b) Obtain a numerical result for a spherical container with a diameter of 40 cm containing air at 293 K, if there is a circular hole of diameter 1.0 mm in the surface.
Chapter 6 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 6 - The temperature distribution within a laminar...Ch. 6 - In flow over a surface, velocity and temperature...Ch. 6 - In a particular application involving airflow over...Ch. 6 - Water at a temperature of T=25C flows over one of...Ch. 6 - For laminar flow over a flat plate, the local heat...Ch. 6 - A flat plate is of planar dimension 1m0.75m. For...Ch. 6 - Parallel flow of atmospheric air over a flat plate...Ch. 6 - For laminar free convection from a heated vertical...Ch. 6 - A circular. hot gas jet at T is directed normal to...Ch. 6 - Experiments have been conducted to determine local...
Ch. 6 - A concentrating solar collector consists of a...Ch. 6 - Air at a free stream temperature of T=20C is in...Ch. 6 - The heat transfer rate per unit width (normal to...Ch. 6 - Experiments to determine the local convection heat...Ch. 6 - An experimental procedure for validating results...Ch. 6 - If laminar flow is induced at the surface of a...Ch. 6 - Consider the rotating disk of Problem 6.16. A...Ch. 6 - Consider airflow over a flat plate of length L=1m...Ch. 6 - A fan that can provide air speeds up to 50 m/s is...Ch. 6 - Consider the flow conditions of Example 6.4 for...Ch. 6 - Assuming a transition Reynolds number of 5105,...Ch. 6 - To a good approximation, the dynamic viscosity the...Ch. 6 - Prob. 6.23PCh. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Experiments have shown that the transition from...Ch. 6 - An object of irregular shape has a characteristic...Ch. 6 - Experiments have shown that, for airflow at T=35C...Ch. 6 - Experimental measurements of the convection heat...Ch. 6 - To assess the efficacy of different liquids for...Ch. 6 - Gases are often used instead of liquids to cool...Ch. 6 - Experimental results for heat transfer over a flat...Ch. 6 - Consider conditions for which a fluid with a free...Ch. 6 - Consider the nanofluid of Example 2.2. Calculate...Ch. 6 - For flow over a flat plate of length L, the local...Ch. 6 - For laminar boundary layer flow over a flat plate...Ch. 6 - Sketch the variation of the velocity and thermal...Ch. 6 - Consider parallel flow over a flat plate for air...Ch. 6 - Forced air at T=25C and V=10m/s is used to cool...Ch. 6 - Consider the electronic elements that are cooled...Ch. 6 - Consider the chip on the circuit board of Problem...Ch. 6 - A major contributor to product defects in...Ch. 6 - A microscale detector monitors a steady flow...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side is...Ch. 6 - Atmospheric air is in parallel flow...Ch. 6 - Determine the drag force imparted to the top...Ch. 6 - For flow over a flat plate with an extremely rough...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side with...Ch. 6 - As a means of preventing ice formation on the...Ch. 6 - A circuit board with a dense distribution of...Ch. 6 - On a summer day the air temperature is 27C and the...Ch. 6 - It is observed that a 230-mm-diameter pan of water...Ch. 6 - The rate at which water is lost because of...Ch. 6 - Photosynthesis, as it occurs in the leaves of a...Ch. 6 - Species A is evaporating from a flat surface into...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - An object of irregular shape has a characteristic...Ch. 6 - Prob. 6.60PCh. 6 - An object of irregular shape 1 m long maintained...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - A streamlined strut supporting a bearing housing...Ch. 6 - Prob. 6.67PCh. 6 - Consider the conditions of Problem 6.7, for which...Ch. 6 - Using the naphthalene sublimation technique. the...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Dry air at 32C flows over a wetted (water) plate...Ch. 6 - Dry air at 32C flows over a wetted plate of length...Ch. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - An expression for the actual water vapor partial...Ch. 6 - A mist cooler is used to provide relief for a...Ch. 6 - A wet-bulb thermometer consists of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.83PCh. 6 - An experiment is conducted to determine the...Ch. 6 - Prob. 6.85PCh. 6 - Consider the control volume shown for the special...Ch. 6 - Prob. 6S.2PCh. 6 - Prob. 6S.3PCh. 6 - Consider two large (infinite) parallel plates, 5...Ch. 6 - Prob. 6S.5PCh. 6 - Consider Couette flow for which the moving plate...Ch. 6 - A shaft with a diameter of 100 mm rotates at 9000...Ch. 6 - Consider the problem of steady, incompressible...Ch. 6 - Prob. 6S.11PCh. 6 - A simple scheme for desalination involves...Ch. 6 - Consider the conservation equations (6S.24) and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Extend the steady fl ow between a fi xed lower plate and amoving upper plate, to the case of twoimmiscible liquids between the plates, as in Fig. (a) Sketch the expected no-slip velocity distribution u ( y )between the plates. ( b ) Find an analytic expression for thevelocity U at the interface between the two liquid layers.( c ) What is the result of ( b ) if the viscosities and layerthicknesses are equal?arrow_forwardIf I have a cylindrical plug of sandstone 1 m long with a diameter of 3 cm, and with permeability 100 mD, and want to inject water at 3 atm (absolute) into the plug, what rate would be needed if the flow discharges to atmospheric pressurearrow_forwardHelllparrow_forward
- Solve it clearly pleasearrow_forwardCalculate the capillary effect in mm a glass tube of 2mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is 25°C and the values of surface tensions of water and mercury at 25°C in contact with air is 0.0765 and 0.57N/m respectively. The angle of contact for water is 0° and 130° for mercury. Take the density of water 1000 kg/m³ , specific gravity of mercury is 13.6. The capillary effect of water in mm is equal to=, The capillary effect of mercury in mm is equal to=arrow_forwardA cube of side (a) and mass (M) is initially sitting fully submerged at the bottom of a container filled with a liquid of kinematic viscosity v and density p. The container has a square cross-section of side (a+a/5) and the cube is sitting right at the middle of the container base. (a) A force (F) starts pulling the cube up at a constant velocity (U). Develop an expression for the force in terms of (U, M. a. g, p and v). You may assume that the velocity in the gap between the cube's sides and the container walls is linear. The expression for (F) is to be valid as long as the cube remains submerged. (b) After the cube reaches the water surface, it continues to be pulled up by the same force. Develop a differential equation for the variation with time of the fraction of the cube that is submerged in water.arrow_forward
- Please show all workarrow_forwardOxygen reaches the veinless cornea of the eye by diffusing through its tear layer, which is 0.60-mm thick. How long does it take the average oxygen molecule to do this? The diffusion constant of oxygen through water is 1.0 x 10-⁹ m²/s. Hint 1. Treat this as a one-dimensional problem. 2. Convert to minutes. 3. Think about the length of the time interval you have calculated. Enter to 2 significant figures Average time taken by O₂ molecule through the tear layer = 30 minutes As a comparison, calculate the time it takes for oxygen to diffuse through a cell membrane about 10 nm thick. Note: Enter time in seconds instead of minutes. Enter to 2 significant figures Average time taken by O₂ molecule through the cell membrane = 0.5 Sarrow_forwardShow all working explaining detailly each steparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license