Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.57P
To determine
The average convective
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Engine Oil at 58.95 degrees celsius Flows over a 5m long flat plate whose temperature is 20.11 degrees celsius with a velocity of 2.2m/s. Determine the rate of heat transfer (W), considering forced convection, per unit width of the entire plate.
Density = 876kg/m^3
Thermal conductivity = 0.144W/m-K
Pr = 2870
dynamic viscosity = 0.21kg/m-s
Q = ?
Only handwritten otherwise skip and dont copy
i need the answer quickly
Chapter 6 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 6 - The temperature distribution within a laminar...Ch. 6 - In flow over a surface, velocity and temperature...Ch. 6 - In a particular application involving airflow over...Ch. 6 - Water at a temperature of T=25C flows over one of...Ch. 6 - For laminar flow over a flat plate, the local heat...Ch. 6 - A flat plate is of planar dimension 1m0.75m. For...Ch. 6 - Parallel flow of atmospheric air over a flat plate...Ch. 6 - For laminar free convection from a heated vertical...Ch. 6 - A circular. hot gas jet at T is directed normal to...Ch. 6 - Experiments have been conducted to determine local...
Ch. 6 - A concentrating solar collector consists of a...Ch. 6 - Air at a free stream temperature of T=20C is in...Ch. 6 - The heat transfer rate per unit width (normal to...Ch. 6 - Experiments to determine the local convection heat...Ch. 6 - An experimental procedure for validating results...Ch. 6 - If laminar flow is induced at the surface of a...Ch. 6 - Consider the rotating disk of Problem 6.16. A...Ch. 6 - Consider airflow over a flat plate of length L=1m...Ch. 6 - A fan that can provide air speeds up to 50 m/s is...Ch. 6 - Consider the flow conditions of Example 6.4 for...Ch. 6 - Assuming a transition Reynolds number of 5105,...Ch. 6 - To a good approximation, the dynamic viscosity the...Ch. 6 - Prob. 6.23PCh. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Experiments have shown that the transition from...Ch. 6 - An object of irregular shape has a characteristic...Ch. 6 - Experiments have shown that, for airflow at T=35C...Ch. 6 - Experimental measurements of the convection heat...Ch. 6 - To assess the efficacy of different liquids for...Ch. 6 - Gases are often used instead of liquids to cool...Ch. 6 - Experimental results for heat transfer over a flat...Ch. 6 - Consider conditions for which a fluid with a free...Ch. 6 - Consider the nanofluid of Example 2.2. Calculate...Ch. 6 - For flow over a flat plate of length L, the local...Ch. 6 - For laminar boundary layer flow over a flat plate...Ch. 6 - Sketch the variation of the velocity and thermal...Ch. 6 - Consider parallel flow over a flat plate for air...Ch. 6 - Forced air at T=25C and V=10m/s is used to cool...Ch. 6 - Consider the electronic elements that are cooled...Ch. 6 - Consider the chip on the circuit board of Problem...Ch. 6 - A major contributor to product defects in...Ch. 6 - A microscale detector monitors a steady flow...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side is...Ch. 6 - Atmospheric air is in parallel flow...Ch. 6 - Determine the drag force imparted to the top...Ch. 6 - For flow over a flat plate with an extremely rough...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side with...Ch. 6 - As a means of preventing ice formation on the...Ch. 6 - A circuit board with a dense distribution of...Ch. 6 - On a summer day the air temperature is 27C and the...Ch. 6 - It is observed that a 230-mm-diameter pan of water...Ch. 6 - The rate at which water is lost because of...Ch. 6 - Photosynthesis, as it occurs in the leaves of a...Ch. 6 - Species A is evaporating from a flat surface into...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - An object of irregular shape has a characteristic...Ch. 6 - Prob. 6.60PCh. 6 - An object of irregular shape 1 m long maintained...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - A streamlined strut supporting a bearing housing...Ch. 6 - Prob. 6.67PCh. 6 - Consider the conditions of Problem 6.7, for which...Ch. 6 - Using the naphthalene sublimation technique. the...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Dry air at 32C flows over a wetted (water) plate...Ch. 6 - Dry air at 32C flows over a wetted plate of length...Ch. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - An expression for the actual water vapor partial...Ch. 6 - A mist cooler is used to provide relief for a...Ch. 6 - A wet-bulb thermometer consists of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.83PCh. 6 - An experiment is conducted to determine the...Ch. 6 - Prob. 6.85PCh. 6 - Consider the control volume shown for the special...Ch. 6 - Prob. 6S.2PCh. 6 - Prob. 6S.3PCh. 6 - Consider two large (infinite) parallel plates, 5...Ch. 6 - Prob. 6S.5PCh. 6 - Consider Couette flow for which the moving plate...Ch. 6 - A shaft with a diameter of 100 mm rotates at 9000...Ch. 6 - Consider the problem of steady, incompressible...Ch. 6 - Prob. 6S.11PCh. 6 - A simple scheme for desalination involves...Ch. 6 - Consider the conservation equations (6S.24) and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q1: In a process water at 30°C flows over a plate maintained at 10 °C with a free stream velocity of 0.3 m/s. Determine the hydrodynamics boundary layer thickness, thermal boundary layer thickness, local and average values of heat transfer coefficient and refrigeration necessary to maintain the plate temperature. Consider a plate of 1m x 1m size. At the film temperature the property values are: Kinematic viscosity 1.006 x 106 m²/s, Thermal conductivity =0.5978 W/m.K, Prandtl number=7.02. =arrow_forwardfluid-thermal-systemsarrow_forwardAir at 295 K flows at 3 m/s over a flat plate at 390 K. The air properties are as follows: density =1.1 kg/m3, viscosity =18.1×10−6 Pa.s, specific heat capacity =1005 J/kgK, and thermal conductivity =0.024 W/mK. The velocity and temperature profiles are assumed to be linear, giving the local Nusselt number to be Nux = 0.289 Rex1/ 2Pr1/3. The flow will become turbulent at a Reynolds number of 5×105. Assume the width of the plate perpendicular to the air flow is 1 m. At what distance from the leading edge does the flow become turbulent? ________m What is the heat transfer at the point of transition? ___________W What is the total heat transfer along the length of the plate where the flow is laminar? __________Warrow_forward
- The heat transfer from a 3 m diameter sphere to a 27 deg C air stream over a time interval of one hour is 4000 kJ. Estimate the surface temperature of the sphere if the heat transfer coefficient is 15 W/m^2K.arrow_forwardHEAT TRANSFER From the heat transfer property table of water, the properties at 20 0C are as follows: Density = 997.36 kg/m3 Kinematic viscosity = 1.026 × 10-6 m2/s Prandtl number = 7.17 (i) Thickness of hydrodynamic boundary layer = 9.24 mm (ii) Thickness of thermal boundary layer = 4.79 mm (iii)Local friction coefficient = 0.001228 Average friction coefficient = 0.002456 ANSWER QUESTION (iv) ,(vi) and Barrow_forwardHeat transfer. Show all steps for solutionarrow_forward
- only first attemptarrow_forwardOxygen gas at a temperature of 27°C at atmospheric pressure flows in parallel at 20 m/s over a square thin plate with a side of 10 cm. Since the plate is held at 127°C, what is the heat transfer from the plate to the fluid? Heat transfer (W) takes place from only one surface of the platearrow_forwardElectric current of 150 A is carried through a 5 mm diameter cylindrical wire which has a resistance of 0.003 ohm per meter length. The wire is exposed to a cross flow of air at 22°C and its surface temperature is measured as 30°C. In your calculations, take air properties at 300 K and use the following correlation and constants: Rep C m 0.4-4 0.989 0.330 hD Nup = k 4-40 0.911 0.385 C Re, PH %3D %3D 40–4000 0.683 0.466 4000 – 40,000 0.193 0.618 40,000– 400,000 0.027 0.805 Calculate the average heat transfer coefficient in W/m2K Calculate the air velocity in m/sarrow_forward
- A 7 cm diameter bed on a 25 cm long bed, as shown in the figure below. The shaft rotates at 3200 revolutions per minute with uniform intervals of 0.2 mm. Continuous operation The temperatures of the shaft and bearing adjacent to the oil gap are 55 0C. your oil viscosity 0.05 N.s/m2 and its thermal conductivity is 0.17 W/m.K. Continuity, momentum and by simplifying the energy equations and solving for each separately, a) The maximum temperature of the oil, b) Calculate the heat transfer rates to the bearing and shaft.arrow_forwardExample 1 Engine oil at 60°C flows over a 5 m long flat plate whose temperature is 20°C with a velocity of 2 m/s with a surface film temperature of 40°C. The density, thermal conductivity, Prandlt No. and kinematic viscosity are 876 kg/m², 0.144 W/m.K, 28270, and 242 x 10$ m²/s, respectively. Determine the total drag force and the rate of heat transfer per unit width of the entire plate. oil T- = 60°C V-=2 m/s T=20°C- L= 5 m We assume the critical Reynolds number is 5x105. The properties of the oil at the film temperature are:arrow_forwardAir at 20 ◦ C flows inside a pipe 18-mm-ID having a uniform heat flux of 150 W/m 2 on the surface, the average flow velocity at entry being 1.0 m/s. The air pressure is 2 bar. Determine the value of convection coefficient. If the pipe is 2.5 m long, determine the air exit temperature and the wall temperature at the exit. Assume fully developed hydrodynamic boundary layer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license