Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.60P
a.
To determine
The rate of water loss due to evaporation on the summer day.
b.
To determine
The total convective heat loss of the summer day
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An air conditioning system, shown schematically below, supplies air at the rate of 4 kg/s to a space maintained at a db-temperature of 27°C and relative humidity of 50%. The sensible and latent heat loads on the space are 46 kW and 20 kW respectively. Outdoor air at 35°C db-temperature and 24°C wb-temperature is introduced at the rate of 1.1 kg/s. The relative humidity of the air leaving the cooling coil is 90%. The pressure is constant at 101.3 kPa. Determine:the supply air temperature in °Cthe supply air relative humidity in %the mass flow rate of the air that bypasses the cooling coil in kg/sthe refrigeration capacity of the cooling coil in kW
Humid air flows in a duct at atmospheric pressure. The dry bulb temperature and humidity ratio are 80℉ and ω=0.011 (lbm water)/(lbm dry air)
Add the point on the attached chart and complete the other properties of this humid air in the table below:
Estimate the vapor pressure, air pressure, relative humidity, and air density at a height of 1800 m into the atmosphere. The total pressure
is 101 kPa, air temperature is 25°C and the dew point temperature is 15°C near the ground, the lapse rate 7.5°C/km, which is constant for
both air temperature and dew point temperature. The gas constant R is 287 J/kg-K and constant with respect to altitude.
Air Density at 1500m, in kg/m³
Round to three (3) decimal places
Chapter 6 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 6 - The temperature distribution within a laminar...Ch. 6 - In flow over a surface, velocity and temperature...Ch. 6 - In a particular application involving airflow over...Ch. 6 - Water at a temperature of T=25C flows over one of...Ch. 6 - For laminar flow over a flat plate, the local heat...Ch. 6 - A flat plate is of planar dimension 1m0.75m. For...Ch. 6 - Parallel flow of atmospheric air over a flat plate...Ch. 6 - For laminar free convection from a heated vertical...Ch. 6 - A circular. hot gas jet at T is directed normal to...Ch. 6 - Experiments have been conducted to determine local...
Ch. 6 - A concentrating solar collector consists of a...Ch. 6 - Air at a free stream temperature of T=20C is in...Ch. 6 - The heat transfer rate per unit width (normal to...Ch. 6 - Experiments to determine the local convection heat...Ch. 6 - An experimental procedure for validating results...Ch. 6 - If laminar flow is induced at the surface of a...Ch. 6 - Consider the rotating disk of Problem 6.16. A...Ch. 6 - Consider airflow over a flat plate of length L=1m...Ch. 6 - A fan that can provide air speeds up to 50 m/s is...Ch. 6 - Consider the flow conditions of Example 6.4 for...Ch. 6 - Assuming a transition Reynolds number of 5105,...Ch. 6 - To a good approximation, the dynamic viscosity the...Ch. 6 - Prob. 6.23PCh. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Experiments have shown that the transition from...Ch. 6 - An object of irregular shape has a characteristic...Ch. 6 - Experiments have shown that, for airflow at T=35C...Ch. 6 - Experimental measurements of the convection heat...Ch. 6 - To assess the efficacy of different liquids for...Ch. 6 - Gases are often used instead of liquids to cool...Ch. 6 - Experimental results for heat transfer over a flat...Ch. 6 - Consider conditions for which a fluid with a free...Ch. 6 - Consider the nanofluid of Example 2.2. Calculate...Ch. 6 - For flow over a flat plate of length L, the local...Ch. 6 - For laminar boundary layer flow over a flat plate...Ch. 6 - Sketch the variation of the velocity and thermal...Ch. 6 - Consider parallel flow over a flat plate for air...Ch. 6 - Forced air at T=25C and V=10m/s is used to cool...Ch. 6 - Consider the electronic elements that are cooled...Ch. 6 - Consider the chip on the circuit board of Problem...Ch. 6 - A major contributor to product defects in...Ch. 6 - A microscale detector monitors a steady flow...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side is...Ch. 6 - Atmospheric air is in parallel flow...Ch. 6 - Determine the drag force imparted to the top...Ch. 6 - For flow over a flat plate with an extremely rough...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side with...Ch. 6 - As a means of preventing ice formation on the...Ch. 6 - A circuit board with a dense distribution of...Ch. 6 - On a summer day the air temperature is 27C and the...Ch. 6 - It is observed that a 230-mm-diameter pan of water...Ch. 6 - The rate at which water is lost because of...Ch. 6 - Photosynthesis, as it occurs in the leaves of a...Ch. 6 - Species A is evaporating from a flat surface into...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - An object of irregular shape has a characteristic...Ch. 6 - Prob. 6.60PCh. 6 - An object of irregular shape 1 m long maintained...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - A streamlined strut supporting a bearing housing...Ch. 6 - Prob. 6.67PCh. 6 - Consider the conditions of Problem 6.7, for which...Ch. 6 - Using the naphthalene sublimation technique. the...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Dry air at 32C flows over a wetted (water) plate...Ch. 6 - Dry air at 32C flows over a wetted plate of length...Ch. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - An expression for the actual water vapor partial...Ch. 6 - A mist cooler is used to provide relief for a...Ch. 6 - A wet-bulb thermometer consists of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.83PCh. 6 - An experiment is conducted to determine the...Ch. 6 - Prob. 6.85PCh. 6 - Consider the control volume shown for the special...Ch. 6 - Prob. 6S.2PCh. 6 - Prob. 6S.3PCh. 6 - Consider two large (infinite) parallel plates, 5...Ch. 6 - Prob. 6S.5PCh. 6 - Consider Couette flow for which the moving plate...Ch. 6 - A shaft with a diameter of 100 mm rotates at 9000...Ch. 6 - Consider the problem of steady, incompressible...Ch. 6 - Prob. 6S.11PCh. 6 - A simple scheme for desalination involves...Ch. 6 - Consider the conservation equations (6S.24) and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- On a summer day, in Phoenix, Arizona, the inside room temperature is maintained at 20° C while the outdoor air temperature is a sizzling 43.3° C . What is the outdoor-indoor temperature difference in (a) degrees Celsius, and (b) kelvins? Is a 1° temperature difference in Celsius equal to a 1° temperature difference in kelvins If so, why?arrow_forwardEstimate the amount of precipitable water in a saturated air column 1.5 m² of ground surface. The surface pressure is 101.3 kPa, the surface air temperature is 28°C, and lapse rate is 6.5°C/km. R = 287 J/kg-K. Estimate the precipitable water if the average specific humidity and air densities from one level to another is 0.0101 and 0.8849 respectively. Distance between two levels is 1500 m Total Precipitable Water, in kg Round to three (3) decimal placesarrow_forwardA mass of 300kg of oil is cooled in 1 hour from 70 celcius to 35 celcius in a cooler consisting of a bank of tubes through which hot oil passes. Cooling water circulates around the outside of the tubes. Calculate the mass of cooling water required per hour if the water temp increases by 21 degrees celcius . Specific Heat of Oil - 2.0 kJ/kg deg C Specific Heat of Water - 4.186 kJ/kg deg Carrow_forward
- Classify whether the properties given is for subcooled liquid (SC), saturated liquid (SL), wet mixture (WM), saturated vapor (SV), superheated vapor (SP) or saturated (S) (can be liquid or vapor)arrow_forwardplease put atleast 3 decimal places thank youarrow_forwardFrom an open water surface with air temperature 22°C, relative humidity is 40% and wind speed is 3 m/s, all measured at height 2 m above the water surface. Assume a roughness height of 0.03 cm. The net radiation is 200 W/m^2. Cp=1005 J/kg-K *Kelvin = Degree Celsius + 273.2 , use this in computing for the density of air A. Calculate the evaporation using Priestley-Taylor Method (mm/day) B. Calculate the air density (kg/cu.m.)arrow_forward
- Q5Two large containers A and B of the same size are filled with different fluids. The fluids in containers A and B are maintainedat 0° C and 100° C, respectively. A small metal bar, whose initial temperature is 100° C, is lowered into container A. After1 minute the temperature of the bar is 90° C. After 2 minutes the bar is removed and instantly transferred to the othercontainer. After 1 minute in container B, the temperature of the bar rises 10°. How long, measured from the start of theentire process, will it take the bar to reach 99.9° C?arrow_forwardThe temperature of the air in a dryer is maintained constant by the use of steam coils within the dryer. The product enters the dryer at the rate of one metric ton per hour. The initial moisture content is 3 kg moisture per kg of dry solid and will be dried to moisture content of 0.10 kg moisture per kg of dry solid. Air enters the dryer with a humidity ratio of 0.016 kg moisture per kg of dry air and leaves with a relative humidity of 100% while the temperature remains constant at 60°C. If the total pressure of the air is 101.325 kPaa, determine the vapor pressure at heater inlet in psia.arrow_forwardThe temperature of the air in a dryer is maintained constant by the use of steam coils within the dryer. The product enters the dryer at the rate of one metric ton per hour. The initial moisture content is 3 kg moisture per kg of dry solid and will be dried to moisture content of 0.10 kg moisture per kg of dry solid. Air enters the dryer with a humidity ratio of 0.016 kg moisture per kg of dry air and leaves with a relative humidity of 100% while the temperature remains constant at 60°C. If the total pressure of the air is 101.325 kPaa, determine the specific enthalpy at dryer outlet in kJ/kg.arrow_forward
- A thermocouple sensor has a time constant of 50 seconds in still air. When it is subject to a temperature change of 100°C, in 50 s its temperature will have changed by about: 31°C 50°C 63°C 100°Carrow_forwardThe global average sensible heat flux is 17 W/m2. Use the following information to estimate the latent heat flux in units of W/m2. The annual global precipitation amount is about 520×1012 m3/yr. The latent heat of vaporization for water is 2.5×103 kJ/kg and the radius of the Earth is 6400 km. What is the global annual average latent heat flux?arrow_forwardIt is desired to reduce the temperature of the ambient air entering an air handling unit at a volumetric flow rate of 550 m3/min, at a temperature of 35°C and a relative humidity of 0.75 to 20°C and its relative humidity to 0.45. For this purpose, the air is first cooled to a temperature below the dew point by passing through a cooling coil, and after some moisture is taken by condensation, its temperature is increased to 20˚C by passing over a heating coil. In this way, the temperature of the ambient air at the outlet of the air handling unit is brought to 20˚C and its relative humidity to 0.45. It is assumed that the pressure remains constant at P=100 kPa. Relationships will be used in the calculations. a) Calculate the amount of moisture condensed per unit time.b) Find the amount of heat drawn from the air by the cooling coil.c) Calculate the amount of heat given to the air by the heating coil.d) Show the phase changes on the psychrometric diagram.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY