Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.64P
To determine
The average convection heat transfer coefficient associated with the operating condition.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
solve, show assumptions and full solutions
Air at 1 atm and 300 °C is cooled as it flows at a velocity of 5.0 m/s through a tube with a diameter of 2.54 cm. Calculate the heat transfer coefficient if a constant heat flux condition is maintained at the wall and the wall temperature is 20 °C above the temperature along the entire length of the tube. (see attached)
During air cooling of oranges, grapefruit, andtangelos, the heat transfer coefficient for combined convection,radiation, and evaporation for air velocities of0.11 < V < 0.33 m/s is determined experimentally and isexpressed as h = 5.05 kair Re1/3/D, where the diameter Dis the characteristic length. Oranges are cooled by refrigeratedair at 5°C and 1 atm at a velocity of 0.3 m/s. Determine(a) the initial rate of heat transfer from a 7-cm-diameterorange initially at 15°C with a thermal conductivity of0.50 W/m·K, (b) the value of the initial temperature gradientinside the orange at the surface, and (c) the value of theNusselt number.
Chapter 6 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 6 - The temperature distribution within a laminar...Ch. 6 - In flow over a surface, velocity and temperature...Ch. 6 - In a particular application involving airflow over...Ch. 6 - Water at a temperature of T=25C flows over one of...Ch. 6 - For laminar flow over a flat plate, the local heat...Ch. 6 - A flat plate is of planar dimension 1m0.75m. For...Ch. 6 - Parallel flow of atmospheric air over a flat plate...Ch. 6 - For laminar free convection from a heated vertical...Ch. 6 - A circular. hot gas jet at T is directed normal to...Ch. 6 - Experiments have been conducted to determine local...
Ch. 6 - A concentrating solar collector consists of a...Ch. 6 - Air at a free stream temperature of T=20C is in...Ch. 6 - The heat transfer rate per unit width (normal to...Ch. 6 - Experiments to determine the local convection heat...Ch. 6 - An experimental procedure for validating results...Ch. 6 - If laminar flow is induced at the surface of a...Ch. 6 - Consider the rotating disk of Problem 6.16. A...Ch. 6 - Consider airflow over a flat plate of length L=1m...Ch. 6 - A fan that can provide air speeds up to 50 m/s is...Ch. 6 - Consider the flow conditions of Example 6.4 for...Ch. 6 - Assuming a transition Reynolds number of 5105,...Ch. 6 - To a good approximation, the dynamic viscosity the...Ch. 6 - Prob. 6.23PCh. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Experiments have shown that the transition from...Ch. 6 - An object of irregular shape has a characteristic...Ch. 6 - Experiments have shown that, for airflow at T=35C...Ch. 6 - Experimental measurements of the convection heat...Ch. 6 - To assess the efficacy of different liquids for...Ch. 6 - Gases are often used instead of liquids to cool...Ch. 6 - Experimental results for heat transfer over a flat...Ch. 6 - Consider conditions for which a fluid with a free...Ch. 6 - Consider the nanofluid of Example 2.2. Calculate...Ch. 6 - For flow over a flat plate of length L, the local...Ch. 6 - For laminar boundary layer flow over a flat plate...Ch. 6 - Sketch the variation of the velocity and thermal...Ch. 6 - Consider parallel flow over a flat plate for air...Ch. 6 - Forced air at T=25C and V=10m/s is used to cool...Ch. 6 - Consider the electronic elements that are cooled...Ch. 6 - Consider the chip on the circuit board of Problem...Ch. 6 - A major contributor to product defects in...Ch. 6 - A microscale detector monitors a steady flow...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side is...Ch. 6 - Atmospheric air is in parallel flow...Ch. 6 - Determine the drag force imparted to the top...Ch. 6 - For flow over a flat plate with an extremely rough...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side with...Ch. 6 - As a means of preventing ice formation on the...Ch. 6 - A circuit board with a dense distribution of...Ch. 6 - On a summer day the air temperature is 27C and the...Ch. 6 - It is observed that a 230-mm-diameter pan of water...Ch. 6 - The rate at which water is lost because of...Ch. 6 - Photosynthesis, as it occurs in the leaves of a...Ch. 6 - Species A is evaporating from a flat surface into...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - An object of irregular shape has a characteristic...Ch. 6 - Prob. 6.60PCh. 6 - An object of irregular shape 1 m long maintained...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - A streamlined strut supporting a bearing housing...Ch. 6 - Prob. 6.67PCh. 6 - Consider the conditions of Problem 6.7, for which...Ch. 6 - Using the naphthalene sublimation technique. the...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Dry air at 32C flows over a wetted (water) plate...Ch. 6 - Dry air at 32C flows over a wetted plate of length...Ch. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - An expression for the actual water vapor partial...Ch. 6 - A mist cooler is used to provide relief for a...Ch. 6 - A wet-bulb thermometer consists of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.83PCh. 6 - An experiment is conducted to determine the...Ch. 6 - Prob. 6.85PCh. 6 - Consider the control volume shown for the special...Ch. 6 - Prob. 6S.2PCh. 6 - Prob. 6S.3PCh. 6 - Consider two large (infinite) parallel plates, 5...Ch. 6 - Prob. 6S.5PCh. 6 - Consider Couette flow for which the moving plate...Ch. 6 - A shaft with a diameter of 100 mm rotates at 9000...Ch. 6 - Consider the problem of steady, incompressible...Ch. 6 - Prob. 6S.11PCh. 6 - A simple scheme for desalination involves...Ch. 6 - Consider the conservation equations (6S.24) and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air at p = 1 atm enters a thin-walled (D = 5-mm diameter) long tube (L = 2 m) at an inlet temperature of Tmi = 100°C. A constant heat flux is applied to the air from the tube surface. The air mass flow rate is m = 135 x 106 kg/s. If the tube surface temperature at the exit is T = 160°C, determine the heat rate entering the tube, in W. Evaluate properties at T = 400 K. 3,0 Warrow_forward3. Consider two large isothermal plates separated by 2-mm thick oil film. The upper plate moves as a constant velocity of 12 m/s, while the lower plate is stationary. Both plates are maintained at 24 °C. a. Obtain relations for the velocity and temperature distribution in the oil b. Determine the maximum temperature in the oil and the heat flux from the oil to each plate. Properties: k= 0.145 W/mK µ= 0.8374 kg/ms =0,8374 Ns/m?arrow_forwardanswer given are correctarrow_forward
- Only handwritten or I'll dislike sure handwrittenarrow_forwardA 20 mm * 20 mm silicon chip is mounted such that the edges are flush in a substrate. The substrate provides an unheated starting length of 20 mm that acts as turbulator. Airflow at 25°C (1 atm) with a velocity of 25 m/s is used to cool the upper surface of the chip. If the maximum surface temperature of the chip cannot exceed 75°C, determine the maximum allowable power dissipation on the chip surface.arrow_forwardHow is the Reynolds number related to Darcy-Weisbach?arrow_forward
- A 25-mm-diameter hot surface at T = 85°C is cooled by an air jet exiting a 10-mm-diameter round nozzle with a velocity of 60 m/s and temperature of 25°C. The nozzle exit is 25 mm from the hot surface. Determine the percentage change in the average heat transfer coefficient at the hot surface if the air is replaced with carbon dioxide or helium. hco, - hair hair hHe hair hair = i i % ! %arrow_forwardWhat is the length of tubing required to cool air from 80°C to 20°C via an isothermal tube maintained at 0°C? The tube diameter is 20 cm. Mean velocity of air is 4 m/s. Assume the flow to be fully-developed.arrow_forwardFor air flow at a constant wall temperature of 100 ◦C and average bulk temperature of 40 ◦C through a 4-cm-ID pipe, determine the value of average convection coefficient for an inlet velocity of 0.8 m/s if the pipe length is (i) 1 m, (ii) 3 m, (iii) 10 m.arrow_forward
- A manufacturing plant produces an efluent as a waste product. As part of a waste heat recovery system, they want to use this for internal heating and cooling. The effluent is flown through a system where its temperature remains at 303.15 K. A 0.06-m diameter pipe carrying hot water and 0.04-m diameter pipe carrying cold air is passed through this effluent chamber. It can be assumed that the surface temperature of these air and water pipes are same as the effluent temperature. Water comes in at 328.15 K and exits at 308.15 K. The air comes in at 268.15 K and exits at 298.15 K. The mass flow rate of water and air is respectively, 1 kg/s and 0.01 kg/s. Determine the length of the water and air pipes in the system. Convert all calculations to C.arrow_forwardOne house owner with a pond on his property has decided to use the pond water to cool his house. His idea is to flow air through a thin smooth 10-cm-diameter copper tube that could be submerged into the pond. The water in the pond, at few meters below the surface is typically maintained at a constant temperature of 15°C. If he assumes the air (~1 atm) entering the copper tube at a mean temperature of 30°C with an average velocity of 2.5 m/s, determine the necessary copper tube length that would be needed so that the outlet mean temperature of the air is 20°C. You may consider the convection heat transfer coefficient of 1000 W/m2·K on the outer surface of the copper tube, between the pond water and copper tube. Since the copper tube is thin, the conduction resistance of the tube wall may be neglected.arrow_forwardCountercurrent Water-Cooling Tower. A forced-draft countercurrent water-cooling tower is to cool water from 43.3 to 26.7°C. The air enters the bottom of the tower at 23.9°C with a wet bulb temperature of 21.1°C. The value of Hg for the flow conditions is Ho = 0.533 m. The heat-transfer resistance in the liquid phase will be neglected; i.e., h, is very large. Hence, values of H* should be used. Calculate the tower height needed if 1.5 times the minimum air rate is used.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license