Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6S.2P
To determine
The maximum temperature in the oil at rotational velocity of 10 m/s.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the change in internal energy (ΔU) for these processes? Remember that ΔU = (3/2)nRΔT = (3/2)NΔT
Isobaric:P = +20.00V = +48.33T = +48.33N = +20.00
Isochoric:P = +20.00V = +100.00T = +49.00N = +20.00
Adiabatic:P = +3.50V = +284.06T = +49.67N = +20.00
A shaft with a diameter of D = 80 mm and a length of L = 400 mm, shown in Fig is pulled with a constant velocity of U = 5 m/s through a bearing with variable diameter. The clearance between shaft and bearing, which varies from h1 = 1.2 mm to h2 = 0.4 mm, is filled with a Newtonian lubricant whose dynamic viscosity is 0.10 Pa⋅s. Determine the force required to maintain the axial movement of the shaft.
A compressed air tank is designed to contain 50 standard cubic feet of air when Ölled to a gaugepressure of 200 atm at an ambient temperature of 70 F. Calculate the interior volume of thetank. One standard cubic foot of air occupies one cubic foot at standard temperature and pressure(T = 59 F and p = 2116 lb/ft2).
Chapter 6 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 6 - The temperature distribution within a laminar...Ch. 6 - In flow over a surface, velocity and temperature...Ch. 6 - In a particular application involving airflow over...Ch. 6 - Water at a temperature of T=25C flows over one of...Ch. 6 - For laminar flow over a flat plate, the local heat...Ch. 6 - A flat plate is of planar dimension 1m0.75m. For...Ch. 6 - Parallel flow of atmospheric air over a flat plate...Ch. 6 - For laminar free convection from a heated vertical...Ch. 6 - A circular. hot gas jet at T is directed normal to...Ch. 6 - Experiments have been conducted to determine local...
Ch. 6 - A concentrating solar collector consists of a...Ch. 6 - Air at a free stream temperature of T=20C is in...Ch. 6 - The heat transfer rate per unit width (normal to...Ch. 6 - Experiments to determine the local convection heat...Ch. 6 - An experimental procedure for validating results...Ch. 6 - If laminar flow is induced at the surface of a...Ch. 6 - Consider the rotating disk of Problem 6.16. A...Ch. 6 - Consider airflow over a flat plate of length L=1m...Ch. 6 - A fan that can provide air speeds up to 50 m/s is...Ch. 6 - Consider the flow conditions of Example 6.4 for...Ch. 6 - Assuming a transition Reynolds number of 5105,...Ch. 6 - To a good approximation, the dynamic viscosity the...Ch. 6 - Prob. 6.23PCh. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Experiments have shown that the transition from...Ch. 6 - An object of irregular shape has a characteristic...Ch. 6 - Experiments have shown that, for airflow at T=35C...Ch. 6 - Experimental measurements of the convection heat...Ch. 6 - To assess the efficacy of different liquids for...Ch. 6 - Gases are often used instead of liquids to cool...Ch. 6 - Experimental results for heat transfer over a flat...Ch. 6 - Consider conditions for which a fluid with a free...Ch. 6 - Consider the nanofluid of Example 2.2. Calculate...Ch. 6 - For flow over a flat plate of length L, the local...Ch. 6 - For laminar boundary layer flow over a flat plate...Ch. 6 - Sketch the variation of the velocity and thermal...Ch. 6 - Consider parallel flow over a flat plate for air...Ch. 6 - Forced air at T=25C and V=10m/s is used to cool...Ch. 6 - Consider the electronic elements that are cooled...Ch. 6 - Consider the chip on the circuit board of Problem...Ch. 6 - A major contributor to product defects in...Ch. 6 - A microscale detector monitors a steady flow...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side is...Ch. 6 - Atmospheric air is in parallel flow...Ch. 6 - Determine the drag force imparted to the top...Ch. 6 - For flow over a flat plate with an extremely rough...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side with...Ch. 6 - As a means of preventing ice formation on the...Ch. 6 - A circuit board with a dense distribution of...Ch. 6 - On a summer day the air temperature is 27C and the...Ch. 6 - It is observed that a 230-mm-diameter pan of water...Ch. 6 - The rate at which water is lost because of...Ch. 6 - Photosynthesis, as it occurs in the leaves of a...Ch. 6 - Species A is evaporating from a flat surface into...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - An object of irregular shape has a characteristic...Ch. 6 - Prob. 6.60PCh. 6 - An object of irregular shape 1 m long maintained...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - A streamlined strut supporting a bearing housing...Ch. 6 - Prob. 6.67PCh. 6 - Consider the conditions of Problem 6.7, for which...Ch. 6 - Using the naphthalene sublimation technique. the...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Dry air at 32C flows over a wetted (water) plate...Ch. 6 - Dry air at 32C flows over a wetted plate of length...Ch. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - An expression for the actual water vapor partial...Ch. 6 - A mist cooler is used to provide relief for a...Ch. 6 - A wet-bulb thermometer consists of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.83PCh. 6 - An experiment is conducted to determine the...Ch. 6 - Prob. 6.85PCh. 6 - Consider the control volume shown for the special...Ch. 6 - Prob. 6S.2PCh. 6 - Prob. 6S.3PCh. 6 - Consider two large (infinite) parallel plates, 5...Ch. 6 - Prob. 6S.5PCh. 6 - Consider Couette flow for which the moving plate...Ch. 6 - A shaft with a diameter of 100 mm rotates at 9000...Ch. 6 - Consider the problem of steady, incompressible...Ch. 6 - Prob. 6S.11PCh. 6 - A simple scheme for desalination involves...Ch. 6 - Consider the conservation equations (6S.24) and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A pitot static tube is used to measure the velocity of air in a duct. The water manometer shows a reading of 8 cm. The static pressure in the duct is 9 kN/m2 and the air temperature is 320 K. The local barometer reads 740 mm of mercury. Calculate the air velocity if Cv = 0.98. Assume the gas constant for air as 287 J/kg K.arrow_forwardIn an oil pool, a small steel ball is released from the surface (y=0) without initial velocity. The strength of the resistance force exerted by the oil against the movement of the ball is directly proportional to the speed of the ball (Fd = k*V , k: constant). Neglect the buoyant force exerted by the oil. (m = 0.2kg, k = 0.843550 kg/s, g = 9.81 m/s^2). a-) What is the limit speed of ball ( Vlim)? b-) What is the time it takes for the speed of the ball to reach 99% of the limit speed after it is released from the surface? c-) What is the depth at which the ball's velocity reaches 99% of the limit velocity after it is released from the surface?arrow_forwardUnder what conditions can a moving body of fluid be treated as a rigid body?arrow_forward
- An air receiver carries a pressure of 3500 kPa absolute @ a temperature of 25 C. A fire occurs near the receiver which causes the temperature to rise to 80 C. Neglecting the increased volume of the receiver due to expansion, calculate the air pressure at this temperature.arrow_forwardAn object falling vertically through the air is subjected to viscous resistance as well as to the force of gravity. Assume that an object with mass m is dropped from a height so and that the height of the object after t seconds is mg s(1) = 8o + where g = 32.17 fus? and k represents the coefficient of air resistance in Ib-s/ft. Suppose so = 300 ft, m = 0.25 lb, and k = 0.1 lb-s/ft. Find, to within 0.01 s, the time it takes this quarter-pounder to hit the ground. Hint: At t=0, s=s(0)=300ft. On the ground s=0. Using Fixed point iteration method with initial guess t0=3 sec, find the solution up to t7. Draw a graph in mathematica as well.arrow_forwardI will rate immediatelyarrow_forward
- 4. The space between two 6-in. long concentric cylinders is filled with glycerin (viscosity = 8.5 X 10³ lb-s/ft²). The inner cylinder has a radius of 3 in. and the gap width between cylinders is 0.1 in. Determine the torque and the power required to rotate the inner cylinder at 180 rev /min. The outer cylinder is fixed. Assume the velocity distribution in the gap to be linear. Refer to Fig. P1.3. Ans. 0.944 ft.-lb, 17.8 ft-lb/sarrow_forwardA frustum-shaped body is rotating at a constant angular speed of 200 rad/s in a container filled with SAE 10W oil at 20°C (? = 0.100 Pa⋅s), as shown in Fig. If the thickness of the oil film on all sides is 1.2 mm, determine the power required to maintain this motion. Also determine the reduction in the required power input when the oil temperature rises to 80°C (? = 0.0078 Pa⋅s).arrow_forwardH.W/ Determine the maximum available work [kJ/kg] that could be obtained from a power plant using water at 95°C from a 100m depth well. Assume that the water temperature at the outlet of the power plant is 35°C and the surrounding temperature is 25°C.arrow_forward
- Water is enclosed in the piston/cylinder system as shown in the figure. The initial temperature of the water is T1 = 140 °C. The mass of the enclosed water is m, = 12 kg. The piston has mass, m, = 500 kg and diameter, D, = 0.125 m. The water is heated until the specific volume is v, = 0.05 m/kg at which point the piston is fixed in position by a pin, i.e. piston can no longer move. The water is then further heated to a final temperature of T3 = 350°C. Assume that the atmospheric pressure is Po = 100.3 kPa and gravity is g = 9.81 m/s. a) What is the initial pressure of the water, P1, and specific volume v:? b) At state 2 what is the temperature, T2, and is the water a compressed liquid, saturated mixture or a superheated vapour? If the state is a saturated mixture, determine the quality. c) What is the final pressure of the water, P3? d) Draw a P - V (pressure - volume) diagram of the process. Label all state points, process lines, constant temperature line(s) and the pressure and…arrow_forwardThe diagram shows a schematic for a thermometer based on the expansion of some fluid. There is a spherical reservoir of the fluid, with radius R, which is connected via a tube to a vertical section, with a circular cross section, radius r. a. assuming r << R, show that the change in fluid level in the tube is given by: 4 BR³ AT AL = 3 p² Where AT is the change in temperature and is the volumetric expansion coefficient of the fluid b. what properties should the system have to be most sensitive?arrow_forwardThe initial temperature of the cube with a density of 700 kg/m³ and a side of 25 cm is 400K. It is placed in an environment with a temperature of 300 K with h=50 W/(m². K) and begins to cool. Calculate the time (seconds) until the temperature of the cube reaches 360 K. You can apply the total mass approach. C cube=500 J/(kg K)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY