
(a)
Interpretation: The electron configuration for the boron atom needs to be written and the number of unpaired electrons present in it needs to be determined.
Concept Introduction: The electron configuration explains the electron distribution in atomic orbitals. There is a standard notation to write an electron configuration. The atomic shell is written in a sequence with the number of electrons in superscript.
(a)

Answer to Problem 9SP
Explanation of Solution
The given atom is boron. It belongs to group 13 with
To determine the number of unpaired electrons, the atomic orbitals can be drawn as follows:
Now according to Hund’s rule, the filling of electrons in orbitals takes place in such a way that every orbital is singly occupied before any orbital is doubly occupied by electrons. Also, according to the Pauli-exclusion principle, two electrons in the same orbital must have opposite spins.
Now, electrons are filled as follows:
There is 1 unpaired electron in the 2p orbital; thus, the number of unpaired electrons will be 1.
(b)
Interpretation: The electron configuration for the silicon atom needs to be written and the number of unpaired electrons present in it needs to be determined.
Concept Introduction: The electron configuration explains the electron distribution in atomic orbitals. There is a standard notation to write an electron configuration. The atomic shell is written in a sequence with the number of electrons in superscript.
(b)

Answer to Problem 9SP
Explanation of Solution
The given atom is silicon. It belongs to group 14 with atomic number 14. Since the maximum electrons hold by s and p orbitals are 2 and 6 respectively. The electronic configuration is represented as follows:
To determine the number of unpaired electrons, the atomic orbitals can be drawn as follows:
Now according to Hund’s rule, the filling of electrons in orbitals takes place in such a way that every orbital is singly occupied before any orbital is doubly occupied by electrons. Also, according to the Pauli-exclusion principle, two electrons in the same orbital must have opposite spins.
Now, electrons are filled as follows:
There are 2 unpaired electrons in the 3p orbital; thus, the number of unpaired electrons will be 2.
(c)
Interpretation: The electron configuration for the sulfur atom needs to be written and the number of unpaired electrons present in it needs to be determined.
Concept Introduction: The electron configuration explains the electron distribution in atomic orbitals. There is a standard notation to write an electron configuration. The atomic shell is written in a sequence with the number of electrons in superscript.
(c)

Answer to Problem 9SP
Explanation of Solution
The given atom is sulfur. It belongs to group 16 with the atomic number 16. Since the maximum electrons hold by s and p orbitals are 2 and 6 respectively. The electronic configuration is represented as follows:
To determine the number of unpaired electrons, the atomic orbitals can be drawn as follows:
Now according to Hund’s rule, the filling of electrons in orbitals takes place in such a way that every orbital is singly occupied before any orbital is doubly occupied by electrons. Also, according to the Pauli-exclusion principle, two electrons in the same orbital must have opposite spins.
Now, electrons are filled as follows:
There are 2 unpaired electrons in the 3p orbital; thus, the number of unpaired electrons will be 2.
Chapter 5 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- Explain what is the maximum absorbance of in which caffeine absorbs?arrow_forwardExplain reasons as to why the amount of caffeine extracted from both a singular extraction (5ml Mountain Dew) and a multiple extraction (2 x 5.0ml Mountain Dew) were severely high when compared to coca-cola?arrow_forwardProtecting Groups and Carbonyls 6) The synthesis generates allethrolone that exhibits high insect toxicity but low mammalian toxicity. They are used in pet shampoo, human lice shampoo, and industrial sprays for insects and mosquitos. Propose detailed mechanistic steps to generate the allethrolone label the different types of reagents (Grignard, acid/base protonation, acid/base deprotonation, reduction, oxidation, witting, aldol condensation, Robinson annulation, etc.) III + VI HS HS H+ CH,CH,Li III I II IV CI + P(Ph)3 V ༼ Hint: no strong base added VI S VII IX HO VIII -MgBr HgCl2,HgO HO. isomerization aqeuous solution H,SO, ༽༽༤༽༽ X MeOH Hint: enhances selectivity for reaction at the S X ☑arrow_forward
- Draw the complete mechanism for the acid-catalyzed hydration of this alkene. esc 田 Explanation Check 1 888 Q A slock Add/Remove step Q F4 F5 F6 A བྲA F7 $ % 5 @ 4 2 3 & 6 87 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce W E R T Y U S D LL G H IK DD 요 F8 F9 F10 F1 * ( 8 9 0 O P J K L Z X C V B N M H He commandarrow_forwardExplanation Check F1 H₂O H₂ Pd 1) MCPBA 2) H3O+ 1) Hg(OAc)2, H₂O 2) NaBH4 OH CI OH OH OH hydration halohydrin formation addition halogenation hydrogenation inhalation hydrogenation hydration ☐ halohydrin formation addition halogenation formation chelation hydrogenation halohydrin formation substitution hydration halogenation addition Ohalohydrin formation subtraction halogenation addition hydrogenation hydration F2 80 F3 σ F4 F5 F6 1 ! 2 # 3 $ 4 % 05 Q W & Å © 2025 McGraw Hill LLC. All Rights Reserved. F7 F8 ( 6 7 8 9 LU E R T Y U A F9arrow_forwardShow the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forward
- Soap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forwardWhat are the reactions or reagents used? *see imagearrow_forwardWhat are the reactions or reagents used? *see imagearrow_forward
- Provide the mechanism for this transformation: *see imagearrow_forwardAssign all the signals individually (please assign the red, green and blue)arrow_forwardThe two pKa values of oxalic acid are 1.25 and 3.81. Why are they not the same value? Show the protontransfer as part of your explanation. *see imagearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





