Chemistry 2012 Student Edition (hard Cover) Grade 11
12th Edition
ISBN: 9780132525763
Author: Prentice Hall
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 29A
Interpretation Introduction
Interpretation: To determine the Rutherford model of the atom and to compare the Rutherford model and Niels Bohr model.
Concept Introduction: Rutherford model would be named a nuclear model. He gave the model of an atom where the position of electrons, as well as proton, will describe.
Expert Solution & Answer
Explanation of Solution
According to Ernest Rutherford, the atom was primarily made up of unoccupied space, with the majority of its mass being confined to a tiny core nucleus. The electrons, which are negatively charged, are far away from the positive nucleus.
The comparison between the Rutherford model and Neils model.
Rutherford model | Neils Bohr model |
Rutherford’s model gave the gold foil experiment. | The hydrogen atom's line of spectra is given by the Neils Bohr model. |
Rutherford does not explain the energy level of the atoms. | Niels says that atoms have various kinds of energy levels. |
Rutherford’s model talked about the continuous spectrum of atoms. |
Chapter 5 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
Ch. 5.1 - Prob. 1LCCh. 5.1 - Prob. 2LCCh. 5.1 - Prob. 3LCCh. 5.1 - Prob. 4LCCh. 5.1 - Prob. 5LCCh. 5.1 - Prob. 6LCCh. 5.1 - Prob. 7LCCh. 5.1 - Prob. 8SPCh. 5.1 - Prob. 9SPCh. 5.2 - Prob. 10LC
Ch. 5.2 - Prob. 11LCCh. 5.2 - Prob. 12LCCh. 5.2 - Prob. 13LCCh. 5.2 - Prob. 14LCCh. 5.3 - Prob. 15SPCh. 5.3 - Prob. 16SPCh. 5.3 - Prob. 17SPCh. 5.3 - Prob. 18SPCh. 5.3 - Prob. 19LCCh. 5.3 - Prob. 20LCCh. 5.3 - Prob. 21LCCh. 5.3 - Prob. 22LCCh. 5.3 - Prob. 23LCCh. 5.3 - Prob. 24LCCh. 5.3 - Prob. 25LCCh. 5.3 - Prob. 26LCCh. 5 - Prob. 27ACh. 5 - Prob. 28ACh. 5 - Prob. 29ACh. 5 - Prob. 30ACh. 5 - Prob. 31ACh. 5 - Prob. 32ACh. 5 - Prob. 33ACh. 5 - Prob. 34ACh. 5 - Prob. 35ACh. 5 - Prob. 36ACh. 5 - Prob. 37ACh. 5 - Prob. 38ACh. 5 - Prob. 39ACh. 5 - Prob. 40ACh. 5 - Prob. 41ACh. 5 - Prob. 42ACh. 5 - Prob. 43ACh. 5 - Prob. 44ACh. 5 - Prob. 45ACh. 5 - Prob. 46ACh. 5 - Prob. 47ACh. 5 - Prob. 48ACh. 5 - Prob. 49ACh. 5 - Prob. 50ACh. 5 - Prob. 51ACh. 5 - Prob. 52ACh. 5 - Prob. 53ACh. 5 - Prob. 54ACh. 5 - Prob. 55ACh. 5 - Prob. 56ACh. 5 - Prob. 57ACh. 5 - Prob. 58ACh. 5 - Prob. 59ACh. 5 - Prob. 60ACh. 5 - Prob. 61ACh. 5 - Prob. 62ACh. 5 - Prob. 63ACh. 5 - Prob. 64ACh. 5 - Prob. 65ACh. 5 - Prob. 66ACh. 5 - Prob. 67ACh. 5 - Prob. 68ACh. 5 - Prob. 69ACh. 5 - Prob. 70ACh. 5 - Prob. 71ACh. 5 - Prob. 72ACh. 5 - Prob. 73ACh. 5 - Prob. 74ACh. 5 - Prob. 75ACh. 5 - Prob. 77ACh. 5 - Prob. 78ACh. 5 - Prob. 79ACh. 5 - Prob. 80ACh. 5 - Prob. 81ACh. 5 - Prob. 82ACh. 5 - Prob. 83ACh. 5 - Prob. 85ACh. 5 - Prob. 86ACh. 5 - Prob. 88ACh. 5 - Prob. 89ACh. 5 - Prob. 90ACh. 5 - Prob. 91ACh. 5 - Prob. 92ACh. 5 - Prob. 93ACh. 5 - Prob. 94ACh. 5 - Prob. 95ACh. 5 - Prob. 96ACh. 5 - Prob. 97ACh. 5 - Prob. 98ACh. 5 - Prob. 99ACh. 5 - Prob. 100ACh. 5 - Prob. 101ACh. 5 - Prob. 102ACh. 5 - Prob. 103ACh. 5 - Prob. 104ACh. 5 - Prob. 105ACh. 5 - Prob. 106ACh. 5 - Prob. 1STPCh. 5 - Prob. 2STPCh. 5 - Prob. 3STPCh. 5 - Prob. 4STPCh. 5 - Prob. 5STPCh. 5 - Prob. 6STPCh. 5 - Prob. 7STPCh. 5 - Prob. 8STPCh. 5 - Prob. 9STPCh. 5 - Prob. 10STPCh. 5 - Prob. 11STPCh. 5 - Prob. 12STPCh. 5 - Prob. 13STPCh. 5 - Prob. 14STPCh. 5 - Prob. 15STP
Knowledge Booster
Similar questions
- Don't used Ai solutionarrow_forwardDraw a Lewis dot structure for C2H4Oarrow_forward3.3 Consider the variation of molar Gibbs energy with pressure. 3.3.1 Write the mathematical expression for the slope of graph of molar Gibbs energy against 3.3.2 pressure at constant temperature. Draw in same diagram graphs showing variation with pressure of molar Gibbs energies of a substance in gaseous, liquid and solid forms at constant temperature. 3.3.3 Indicate in your graphs melting and boiling points. 3.3.4 Indicate for the respective phases the regions of relative stability.arrow_forward
- In 2-chloropropane, the signal for the H on the C next to Cl should be split into how many peaks?arrow_forward4.4 Consider as perfect gas 3.0 mol of argon gas to which 229 J of energy is supplied as heat at constant pressure and temperature increases by 2.55 K. Calculate 4.4.1 constant pressure molar heat capacity. 4.4.2 constant volume molar heat capacity.arrow_forward3.2 32 Consider calibrating a calorimeter and measuring heat transferred. A sample of compound was burned in a calorimeter and a temperature change of 3.33°C recorded. When a 1.23 A current from a 12.0 V source was passed through a heater in the same calorimeter for 156 s, the temperature changed of 4.47°C was recorded. 3.2.1 Calculate the heat supplied by the heater. 3.2.2 Calculate the calorimeter constant. 3.2.3 Calculate the heat released by the combustion reaction.arrow_forward
- -.1 Consider the standard enthalpy of formation of gaseous water at 25°C as -241.82 kJ/mol and calculate the standard enthalpy of formation of gaseous water at 100°C.arrow_forward3.5 Complete the following sentences to make correct scientific meaning. 3.5.1 The entropy of a perfect gas. 3.5.2 when it expands isothermally. The change in entropy of a substance accompanying a change of state at its transition 3.5.3 temperature is calculated from its of transition. The increase in entropy when a substance is heated is calculated from itsarrow_forward3.4 Consider the internal energy of a substance 3.4.1 Draw a graph showing the variation of internal energy with temperature at constant volume 3.4.2 Write the mathematical expression for the slope in your graph in 3.4.1arrow_forward
- For a system, the excited state decays to the ground state with a half-life of 15 ns, emitting radiation of 6000 Å. Determine the Einstein coefficients for stimulated absorption and spontaneous emission and the dipole moment of the transition. Data: epsilon 0 = 8.85419x10-12 C2m-1J-1arrow_forwardProblem a. The following compounds have the same molecular formula as benzene. How many monobrominated products could each form? 1. HC =CC=CCH2CH3 2. CH2=CHC = CCH=CH₂ b. How many dibrominated products could each of the preceding compounds form? (Do not include stereoisomers.)arrow_forwardDon't used Ai solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY