Interpretation : The error in each diagram is to be identified and corrected.
Concept Introduction : Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei. The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
Answer to Problem 77A
The pairing of electrons should not take place until four electrons are present in p orbitals.
The correct diagram of the nitrogen atom is given as:
Explanation of Solution
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
The given element is the nitrogen ground state.
The electronic configuration is
According to Hund’s rule, until every orbital in that subshell has one electron in it, or until it is completely occupied, pairs of electrons cannot exist in orbitals that belong to the same subshell (p, d, or f).
The pairing of electrons will begin in the p orbitals with the entry of four electrons since there are three p orbitals.
The given diagram is wrong since the pairing of electrons takes place when there are only three electrons in p orbitals.
Since in a nitrogen atom, there are only three electrons so no pairing of electrons takes place.
The correct orbitals picture of the nitrogen atom is given as:
Interpretation : The error in each diagram is to be identified and corrected.
Concept Introduction : Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei. The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
Answer to Problem 77A
The orbital filling of electrons in magnesium is wrong since there are only ten electrons are present.
The correct diagram of the magnesium atom is given as:
Explanation of Solution
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
The given element is the magnesium ground state.
The electronic configuration is
In the given orbitals filling of magnesium, there are only ten electrons present so it is wrong.
The correct orbitals picture of the magnesium atom is given as:
Chapter 5 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- Devise electrochemical cells in which the following reactions could be made to occur. If liquid junctions are necessary, note them in the cell schematic appropriately, but neglect their effects. (a) H2OH + OH¯ (b) 2H2O2 H₂O (c) 2PbSO4 + 2H2O (d) An TMPD PыO₂+ Pb + 4H+ + 20%¯¯ An + TMPD (in acetonitrile, where An and An are anthracene and its anion radical, and TMPD and TMPD are N,N,N',N'-tetramethyl-p-phenylenediamine and its cation radical. Use anthracene potentials for DMF solutions given in Appendix C.3). (e) 2Ce3+ + 2H + BQ 2Ce4+ + H2Q (aqueous, where BQ is p-benzoquinone and H₂Q is p- hydroquinone) (f) Ag +Agl (aqueous) (g) Fe3+ + Fe(CN)6 Fe²+ + Fe(CN) (aqueous)arrow_forwardConsider each of the following electrode-solution interfaces, and write the equation for the elec- trode reaction that occurs first when the potential is moved in (1) a negative direction and (2) a posi- tive direction from the open-circuit potential. Next to each reaction write the approximate potential for the reaction in V vs. SCE (assuming the reaction is reversible). (a) Pt/Cu2+ (0.01 M), Cd2+ (0.01 M), H2SO4(1 M) (b) Pt/Sn2+ (0.01 M), Sn4+ (0.01 M), HCl(1 M) (c) Hg/Cd2+ (0.01 M), Zn2+ (0.01 M), HCl(1 M)arrow_forwardWhat are the major products of both of the organic reactions. Please be sure to use wedge and dash bonds to show the stereochemistry of the products if it is needed. Please include the final product as well as a digram/drawing to show the mechanism of the reaction.arrow_forward
- K Problem 16 of 24 Submit Draw the starting structure that would yield this product under these conditions. Select to Draw 1. NH4Cl, NaCN 2. HCI, H2O, A NH3 + 0arrow_forwardGive detailed me detailed mechanism Solution with explanation needed. Don't give Ai generated solution. avoid handwritten Solutionarrow_forwardShow work with explanation needed. don't give Ai generated solutionarrow_forward
- K Problem 21 of 24 Submit Draw the missing organic structures in the following multistep synthesis. Show the final product at physiological pH (pH = 7.4). Ignore any inorganic byproducts formed. H 0 NH3 Select to Draw HCN H+, H2O Select to Draw Select to Draw Δarrow_forwardShow work with explanation needed. Don't give Ai generated solution. Give correct solutionarrow_forwardK Problem 23 of 24 Submit Draw the product of the reaction shown below at physiological pH (pH = 7.4). Ignore inorganic byproducts. S O 1. NH3, 2. HCN 3. H+, H₂O, A Select to Drawarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY