
Interpretation: The ground state of an atom, excited state, and impossible electronic configuration of the element is to be inferred. The element is to identify and explained.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei. The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.

Answer to Problem 79A
The ground state of the atom is option (a)
The excited state of the atom is (b)
The impossible electronic configuration is (c)
The element is Potassium.
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
Where, s orbitals accommodate 2 electrons, p orbitals 6 electrons, d orbitals 10 electrons, and f orbitals 14 electrons.
Option (a):
The given electronic configuration is
The electronic configuration is not arranged in order of orbital filling, so it is the excited state of the element.
To find the symbol of the atom, add on the superscripts of the electronic configuration.
The element with
So, option (a) is the excited state of Potassium.
Option (b):
The given electronic configuration is
The electronic configuration is arranged in order of orbital filling, so it is the ground state of the element.
To find the symbol of the atom, add on the superscripts of the electronic configuration.
The element with atomic number 19 is Potassium. Its symbol is
So, option (b) is the ground state of Potassium.
Option (c):
The given electronic configuration is
The electronic configuration is not possible because the p-orbital has 7 electrons which is not possible.
The p-orbital can accommodate only 6 electrons.
So, option (c) is the impossible electronic configuration.
Chapter 5 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- Show the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forwardSoap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forwardWhat are the reactions or reagents used? *see imagearrow_forward
- The two pKa values of oxalic acid are 1.25 and 3.81. Why are they not the same value? Show the protontransfer as part of your explanation. *see imagearrow_forwardасть Identify all the bonds that gauche interact with C-OMe in the most stable conformation of the above compound.arrow_forwardPredict the reactants used in the formation of the following compounds using Acid-Catalyzed dehydration reactionarrow_forward
- Can I please get help with this?arrow_forward.. Give the major organic product(s) for each of the following reactions or sequences of reactions. Show ll relevant stereochemistry [3 ONLY]. A H Br 1. NaCN 2 NaOH, H₂O, heat 3. H3O+ B. CH₂COOH 19000 1. LiAlH4 THF, heat 2 H₂O* C. CH Br 1. NaCN, acetone 2 H3O+, heat D. Br 1. Mg. ether 3. H₂O+ 2 CO₂ E. CN 1. (CH) CHMgBr, ether 2 H₂O+arrow_forwardAssign this COSY spectrumarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





