(a)
Interpretation: The electron configuration for the element with
Concept Introduction: The electron configuration explains the electron distribution in atomic orbitals. There is a standard notation to write an electron configuration. The atomic shell is written in a sequence with the number of electrons in superscript.
(a)
Answer to Problem 40A
Explanation of Solution
The given atomic number is 7. Since the atomic number is equal to the number of electrons, thus, the total number of electrons present in the atom will be 7. Now s , p, and d orbitals can maximum hold 2, 6, and 10 electrons; thus, the electron configuration of the element with atomic number 7 will be:
(b)
Interpretation: The electron configuration for the element with atomic number 9 needs to be written.
Concept Introduction: The electron configuration explains the electron distribution in atomic orbitals. There is a standard notation to write an electron configuration. The atomic shell is written in a sequence with the number of electrons in superscript.
(b)
Answer to Problem 40A
Explanation of Solution
The given atomic number is 9. Since the atomic number is equal to the number of electrons, thus, the total number of electrons present in the atom will be 9. Now, s , p, and d orbitals can maximum hold 2, 6, and 10 electrons; thus, the electron configuration of the element with atomic number 9 will be:
(c)
Interpretation: The electron configuration for the element with atomic number 12 needs to be written.
Concept Introduction: The electron configuration explains the electron distribution in atomic orbitals. There is a standard notation to write an electron configuration. The atomic shell is written in a sequence with the number of electrons in superscript.
(c)
Answer to Problem 40A
Explanation of Solution
The given atomic number is 12. Since the atomic number is equal to the number of electrons, thus, the total number of electrons present in the atom will be 12. Now, s , p, and d orbitals can maximum hold 2, 6, and 10 electrons; thus, the electron configuration of the element with atomic number 12 will be:
(d)
Interpretation: The electron configuration for the element with atomic number 36 needs to be written.
Concept Introduction: The electron configuration explains the electron distribution in atomic orbitals. There is a standard notation to write an electron configuration. The atomic shell is written in a sequence with the number of electrons in superscript.
(d)
Answer to Problem 40A
Explanation of Solution
The given atomic number is 36. Since the atomic number is equal to the number of electrons, thus, the total number of electrons present in the atom will be 36. Now, s , p, and d orbitals can maximum hold 2, 6, and 10 electrons; thus, the electron configuration of the element with atomic number 36 will be:
Here, 4s orbital is filled before 3d .
Chapter 5 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- Devise electrochemical cells in which the following reactions could be made to occur. If liquid junctions are necessary, note them in the cell schematic appropriately, but neglect their effects. (a) H2OH + OH¯ (b) 2H2O2 H₂O (c) 2PbSO4 + 2H2O (d) An TMPD PыO₂+ Pb + 4H+ + 20%¯¯ An + TMPD (in acetonitrile, where An and An are anthracene and its anion radical, and TMPD and TMPD are N,N,N',N'-tetramethyl-p-phenylenediamine and its cation radical. Use anthracene potentials for DMF solutions given in Appendix C.3). (e) 2Ce3+ + 2H + BQ 2Ce4+ + H2Q (aqueous, where BQ is p-benzoquinone and H₂Q is p- hydroquinone) (f) Ag +Agl (aqueous) (g) Fe3+ + Fe(CN)6 Fe²+ + Fe(CN) (aqueous)arrow_forwardConsider each of the following electrode-solution interfaces, and write the equation for the elec- trode reaction that occurs first when the potential is moved in (1) a negative direction and (2) a posi- tive direction from the open-circuit potential. Next to each reaction write the approximate potential for the reaction in V vs. SCE (assuming the reaction is reversible). (a) Pt/Cu2+ (0.01 M), Cd2+ (0.01 M), H2SO4(1 M) (b) Pt/Sn2+ (0.01 M), Sn4+ (0.01 M), HCl(1 M) (c) Hg/Cd2+ (0.01 M), Zn2+ (0.01 M), HCl(1 M)arrow_forwardWhat are the major products of both of the organic reactions. Please be sure to use wedge and dash bonds to show the stereochemistry of the products if it is needed. Please include the final product as well as a digram/drawing to show the mechanism of the reaction.arrow_forward
- K Problem 16 of 24 Submit Draw the starting structure that would yield this product under these conditions. Select to Draw 1. NH4Cl, NaCN 2. HCI, H2O, A NH3 + 0arrow_forwardGive detailed me detailed mechanism Solution with explanation needed. Don't give Ai generated solution. avoid handwritten Solutionarrow_forwardShow work with explanation needed. don't give Ai generated solutionarrow_forward
- K Problem 21 of 24 Submit Draw the missing organic structures in the following multistep synthesis. Show the final product at physiological pH (pH = 7.4). Ignore any inorganic byproducts formed. H 0 NH3 Select to Draw HCN H+, H2O Select to Draw Select to Draw Δarrow_forwardShow work with explanation needed. Don't give Ai generated solution. Give correct solutionarrow_forwardK Problem 23 of 24 Submit Draw the product of the reaction shown below at physiological pH (pH = 7.4). Ignore inorganic byproducts. S O 1. NH3, 2. HCN 3. H+, H₂O, A Select to Drawarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY