Interpretation: The symbol for the atoms that correspond to electron configuration is to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
Answer to Problem 56A
The symbol for the atoms that correspond to electron configuration is
The element is Argon.
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
Where, s orbitals accommodate 2 electrons, p orbitals 6 electrons, d orbitals 10 electrons, and f orbitals 14 electrons.
The given electronic configuration is
To find the symbol of the atom, add on the superscripts of the electronic configuration.
The element with
Interpretation: The symbol for the atoms that correspond to electron configuration is to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
Answer to Problem 56A
The symbol for the atoms that correspond to electron configuration is
The element is Ruthenium.
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
Where, s orbitals accommodate 2 electrons, p orbitals 6 electrons, d orbitals 10 electrons, and f orbitals 14 electrons.
The given electronic configuration is
To find the symbol of the atom, add on the superscripts of the electronic configuration.
The element with atomic number 44 is Ruthenium. Its symbol is
Interpretation: The symbol for the atoms that correspond to electron configuration is to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
Answer to Problem 56A
The symbol for the atoms that correspond to electron configuration is
The element is Gadolinium.
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
Where, s orbitals accommodate 2 electrons, p orbitals 6 electrons, d orbitals 10 electrons, and f orbitals 14 electrons.
The given electronic configuration is
To find the symbol of the atom, add on the superscripts of the electronic configuration.
The element with atomic number 64 is Gadolinium. Its symbol is
Chapter 5 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- Tryptophan is an essential amino acid important in the synthesis of neurotransmitter serotonin in the body. What are the hybridization states, molecular geometry and approximate bond angle at the indicated carbon and nitrogen atoms? Please provide a thorough explanation that allows for undertanding of topic.arrow_forwardCan the target compound be efficiently synthesized in good yield from the substituted benzene of the starting material? If yes, draw the synthesis. Include all steps and all reactants.arrow_forwardWhat are the major products of this organic reaction? Please include all steps and explanations so that I can understand why. If there will be no significant reaction, explain why.arrow_forward
- Don't used Ai solutionarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardWhat are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forward
- Can the following molecule be made in good yield from no more than two reactants, by moderately heating the reactants? If yes, draw the reactant or reactants. If no, then the product can't be made in one step.arrow_forwardDon't used Ai solutionarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY