a)
Interpretation: The electronic configurations for atoms of the elements are to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
a)
Answer to Problem 41A
The electronic configuration of the sodium atom is
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The symbol
The
Sodium contains 11 electrons.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
The electronic configuration of the sodium atom is written as follows:
b)
Interpretation: The electronic configurations for atoms of the elements are to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
b)
Answer to Problem 41A
The electronic configuration of the potassium atom is
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The symbol
The atomic number of potassium is 19.
Potassium contains 19 electrons.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
The electronic configuration of the potassium atom is written as follows:
c)
Interpretation: The electronic configurations for atoms of the elements are to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
c)
Answer to Problem 41A
The electronic configuration of the iodine atom is
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The symbol
The atomic number of iodine is 53.
Iodine contains 53 electrons.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
The electronic configuration of the iodine atom is written as follows:
d)
Interpretation: The electronic configurations for atoms of the elements are to be represented.
Concept Introduction: Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
d)
Answer to Problem 41A
The electronic configuration of the neon atom is
Explanation of Solution
Electronic configurations refer to the arrangements of electrons in different orbitals around atoms' nuclei.
The Aufbau principle, the Pauli exclusion principle, and Hund's rule are three rules that can be used to determine the electronic configuration of atoms.
The symbol
The atomic number of neon is 10.
Neon contains 10 electrons.
The energy levels and symbols for each sub-level occupied by an electron are written for an atom's electrical configuration.
Each sub-level is superscripted with the number of electrons occupied. The number of electrons in an atom is equal to the sum of the superscripts.
The order of orbital filling of the atoms is given as
The electronic configuration of the neon atom is written as follows:
Chapter 5 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- An essential part of the experimental design process is to select appropriate dependent and independent variables. True Falsearrow_forward10.00 g of Compound X with molecular formula C₂Hg are burned in a constant-pressure calorimeter containing 40.00 kg of water at 25 °C. The temperature of the water is observed to rise by 2.604 °C. (You may assume all the heat released by the reaction is absorbed by the water, and none by the calorimeter itself.) Calculate the standard heat of formation of Compound X at 25 °C. Be sure your answer has a unit symbol, if necessary, and round it to the correct number of significant digits.arrow_forwardneed help not sure what am doing wrong step by step please answer is 971A During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration. What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forward
- Influence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forwardThe name of the following molecule is: Νarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY