(a)
Interpretation: The electron configuration for the carbon atom needs to be determined.
Concept Introduction: The electron configuration explains the electron distribution in atomic orbitals. There is a standard notation to write an electron configuration. The atomic shell is written in a sequence with the number of electrons in superscript.
(a)
Answer to Problem 8SP
Explanation of Solution
The given atom is carbon. It belongs to group 14 with
(b)
Interpretation: The electron configuration for the argon atom needs to be determined.
Concept Introduction: The electron configuration explains the electron distribution in atomic orbitals. There is a standard notation to write an electron configuration. The atomic shell is written in a sequence with the number of electrons in superscript.
(b)
Answer to Problem 8SP
Explanation of Solution
The given atom is argon. It belongs to group 18 with atomic number 18. Since the maximum electrons hold by s and p orbitals are 2 and 6 respectively. The electronic configuration is represented as follows:
(c)
Interpretation: The electron configuration for the nickel atom needs to be determined.
Concept Introduction: The electron configuration explains the electron distribution in atomic orbitals. There is a standard notation to write an electron configuration. The atomic shell is written in a sequence with the number of electrons in superscript.
(c)
Answer to Problem 8SP
Explanation of Solution
The given atom is nickel. It belongs to group 10 with atomic number 28. Since the maximum electrons hold by s , p, and d orbitals are 2, 6, and 10 respectively. The electronic configuration is represented as follows:
Chapter 5 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- Consider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related to the total force P by dU dx = P Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of x = x, in terms of the potential energy? 0 P, Force 19 Attraction Total Repulsion x, Distance Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical cohesive strength.arrow_forwardDenote the dipole for the indicated bonds in the following molecules. H3C ✓ CH3 B F-CCl 3 Br-Cl H3C Si(CH3)3 wwwwwww OH НО. HO HO OH vitamin C CH3arrow_forwardFor the SN2 reaction, draw the major organic product and select the correct (R) or (S) designation around the stereocenter carbon in the organic substrate and organic product. Include wedge-and-dash bonds and draw hydrogen on a stereocenter. Η 1 D EN Select Draw Templates More C H D N Erasearrow_forward
- Q9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 NH2 I IIarrow_forwardAN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forwardAN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forward
- (a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3¯)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forwardQ8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor.arrow_forwardQ4: Draw the Lewis structures for the cyanate ion (OCN) and the fulminate ion (CNO). Draw all possible resonance structures for each. Determine which form for each is the major resonance contributor.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY