Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 5.17P

Small spherical particles of diameter D = 50 μ m contain a fluorescent material that. when irradiated with white light, emits at a wavelength corresponding to the materials temperature. Hence the color of the particle varies with its temperature. Because the small particles are neutrally buoyant in liquid water. a researcher wishes to use them to measure instantaneous local water temperatures in a turbulent flow by observing their emitted color. If the particles are characterized by a density. specific heat, and thermal conductivity of ρ = 999 kg/m 3 , k = 1.2 W/m K, and c p = 1200 J/kg K, respectively, determine the time constant of the particles. Hint: Since the particles travel with the flow. heat transfer between the particle and the fluid occurs by conduction. Assume lumped capacitance behavior.

Blurred answer
Students have asked these similar questions
The tungsten filament of an incandescent light bulb has a temperature of approximately 3000 K. The emissivity of tungsten is approximately 1/3, and you may assume that it is independent of wavelength. To increase the efficiency of an incandescent bulb, would you want to raise or lower the temperature? (Some incandescent bulbs do attain slightly higher efficiency by using a different temperature.)
A long, horizontal, cylindrical steel reactor, 1 m in diameter, has a surface temperature of 300ºC. The emissivity of the steel is 0.6, and the heat transfer coefficient for natural convection is 5 W m−2 K−1 . Heat is lost by convection to the air at 15ºC, and also by radiation to the surroundings, which can be considered to be a black body at 15ºC. a) Calculate the total heat loss per metre length of the reactor, and the proportions lost by convection and radiation b) The reactor is then insulated with a thin layer of insulation material to reduce the total heat loss to one-tenth of its original value. This causes the surface temperature of the steel to rise to 400ºC. The thermal conductivity of the insulation is 0.01 W m−1 K−1 , and its surface emissivity is 0.2. Show that the resulting surface temperature of the insulation is about 89ºC, and calculate the thickness of insulation required, stating any assumptions made.   Specifically need help with part b
A long, horizontal, cylindrical steel reactor, 1 m in diameter, has a surface temperature of 300ºC. The emissivity of the steel is 0.6, and the heat transfer coefficient for natural convection is 5 W m−2 K−1 . Heat is lost by convection to the air at 15ºC, and also by radiation to the surroundings, which can be considered to be a black body at 15ºC. a) Calculate the total heat loss per metre length of the reactor, and the proportions lost by convection and radiation. b) The reactor is then insulated with a thin layer of insulation material to reduce the total heat loss to one-tenth of its original value. This causes the surface temperature of the steel to rise to 400ºC. The thermal conductivity of the insulation is 0.01 W m−1 K−1 , and its surface emissivity is 0.2. Show that the resulting surface temperature of the insulation is about 89ºC, and calculate the thickness of insulation required, stating any assumptions made.    can you solve part b please?

Chapter 5 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 5 - The base plate of an iron has a thickness of L=7mm...Ch. 5 - Thermal energy storage systems commonly involve a...Ch. 5 - A tool used for fabricating semiconductor devices...Ch. 5 - A copper sheet of thickness 2L=2mm has an initial...Ch. 5 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 5 - A thermal energy storage unit consists of a large...Ch. 5 - Small spherical particles of diameter D=50m...Ch. 5 - A spherical vessel used as a reactor for producing...Ch. 5 - Batch processes are often used in chemical and...Ch. 5 - An electronic device. such as a power transistor...Ch. 5 - Molecular electronics is an emerging field...Ch. 5 - A plane wall of a furnace is fabricated from plain...Ch. 5 - A steel strip of thickness =12mm is annealed by...Ch. 5 - In a material processing experiment conducted...Ch. 5 - Plasma spray-coating processes are often used to...Ch. 5 - The plasma spray-coating process of Problem 5.25...Ch. 5 - A chip that is of length L=5mm on a side and...Ch. 5 - Consider the conditions of Problem 5.27. In...Ch. 5 - A long wire of diameter D=1mm is submerged in an...Ch. 5 - Consider the system of Problem 5.1 where the...Ch. 5 - Shape memory alloys (SMAs) are metals that undergo...Ch. 5 - Before being injected into a furnace, pulverized...Ch. 5 - As noted in Problem 5.3, microwave ovens operate...Ch. 5 - A metal sphere of diameter D, which is at a...Ch. 5 - A horizontal structure consists of an LA=10...Ch. 5 - As permanent space stations increase in size....Ch. 5 - Thin film coatings characterized by high...Ch. 5 - A long. highly polished aluminum rod of diameter...Ch. 5 - Thermal stress testing is a common procedure used...Ch. 5 - The objective of this problem is to develop...Ch. 5 - In thermomechanical data storage, a processing...Ch. 5 - The melting of water initially at the fusion...Ch. 5 - Consider the series solution, Equation 5.42, for...Ch. 5 - Consider the one-dimensional wall shown in the...Ch. 5 - Copper-coated, epoxy-tilled fiberglass circuit...Ch. 5 - Circuit boards are treated by heating a stack of...Ch. 5 - A constant-property, one-dimensional plane slab of...Ch. 5 - Referring to the semiconductor processing tool of...Ch. 5 - Annealing is a process by which steel is reheated...Ch. 5 - Consider an acrylic sheet of thickness L=5mm that...Ch. 5 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 5 - Steel is sequentially heated and cooled (annealed)...Ch. 5 - Stone mix concrete slabs are used to absorb...Ch. 5 - During transient operation, the steel nozzle of a...Ch. 5 - Two plates of the same material and thickness L...Ch. 5 - In a tempering process, glass plate, which is...Ch. 5 - The strength and stability of tires may be...Ch. 5 - A plastic coating is applied to wood panels by...Ch. 5 - A long rod of 60-mm diameter and thermophysical...Ch. 5 - A long cylinder of 30-mm diameter, initially at a...Ch. 5 - A long pyroceram rod of diameter 20 mm is clad...Ch. 5 - A long rod 40 mm in diameter, fabricated from...Ch. 5 - A cylindrical stone mix concrete beam of diameter...Ch. 5 - A long plastic rod of 30-mm diameter...Ch. 5 - As part of a heat treatment process, cylindrical,...Ch. 5 - In a manufacturing process, long rods of different...Ch. 5 - The density and specific heat of a particular...Ch. 5 - In heat treating to harden steel ball bearings...Ch. 5 - A cold air chamber is proposed for quenching steel...Ch. 5 - Stainless steel (AISI 304) ball bearings. which...Ch. 5 - A sphere 30 mm in diameter initially at 800K is...Ch. 5 - Spheres A and B are initially at 800K. and they...Ch. 5 - Spheres of 40-mm diameter heated to a uniform...Ch. 5 - To determine which parts of a spider's brain are...Ch. 5 - Consider the packed bed operating conditions of...Ch. 5 - Two large blocks of different materials. such as...Ch. 5 - A plane wall of thickness 0.6 m (L=0.3m) is made...Ch. 5 - Asphalt pavement may achieve temperatures as high...Ch. 5 - A thick steel slab...Ch. 5 - A tile-iron consists of a massive plate maintained...Ch. 5 - A simple procedure for measuring surface...Ch. 5 - An insurance company has hired you as a consultant...Ch. 5 - A procedure for determining the thermal...Ch. 5 - A very thick slab with thermal diffusivity...Ch. 5 - Standards for firewalls may be based on their...Ch. 5 - It is well known that, although two materials are...Ch. 5 - Two stainless steel plates...Ch. 5 - Special coatings are often formed by depositing...Ch. 5 - When a molten metal is cast in a mold that is a...Ch. 5 - Joints of high quality can be formed by friction...Ch. 5 - A rewritable optical disc (DVD) is formed by...Ch. 5 - Ground source heat pumps operate by using the...Ch. 5 - To enable cooking a wider range of foods in...Ch. 5 - Derive an expression for the ratio of the total...Ch. 5 - The structural components of modem aircraft are...Ch. 5 - Consider the plane wall of thickness 2L, the...Ch. 5 - Problem 4.9 addressed radioactive wastes stored...Ch. 5 - Derive an expression for the ratio of the total...Ch. 5 - Prob. 5.107PCh. 5 - Prob. 5.108PCh. 5 - A thin rod of diameter D is initially in...Ch. 5 - A one-dimensional slab of thickness 2L is...Ch. 5 - Prob. 5.114PCh. 5 - Prob. 5.115PCh. 5 - A molded plastic product...Ch. 5 - Prob. 5.133PCh. 5 - A thin circular disk is subjected to induction...Ch. 5 - Two very long (in the direction normal to the...Ch. 5 - Prob. 5S.2PCh. 5 - Prob. 5S.3PCh. 5 - Estimate the time required to cook a hot dog in...Ch. 5 - Prob. 5S.7PCh. 5 - Prob. 5S.9PCh. 5 - Prob. 5S.10PCh. 5 - Prob. 5S.11PCh. 5 - Prob. 5S.13P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License