Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.64P
A long rod 40 mm in diameter, fabricated from sapphire (aluminum oxide) and initially at a uniform temperature of 800 K, is suddenly cooled by a fluid at 300 K having a heat transfer coefficient of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
quantity.
Example 1/ The roof of an electrically heated home is 6 m long, 8 m
wide, and 0.25 m thick, and is made of a flat layer of concrete whose
thermal conductivity is k 0.8 W/m.°C (Figure. 1-3). The temperatures
of the inner and the outer surfaces of the roof one night are measured to
be 15°C and 4°C, respectively, for a period of 10 hours. Determine the
rate of heat loss through the roof at night.
Concrete roof -
0.25 m
8 m
6 m
4°C
15°C
Figure 1-3 Schematic for Example 1
Q1/ The center to surface
temperature difference in a heat
generating cylindrical rod of 4 m
diameter was 30°C. What is the
difference temperature between
the center and surface in the case
of a sphere of 2 m diameter under
similar conditions? *
Your answer
Q2/ A metal plate of 4mm thickness
(k = 95.5 W/m°C) is exposed to
vapor at 100°C on one side and
cooling water at 25°C on the
opposite side. The heat transfer
coefficients on vapor side and
waterside are 14500 W/m^2°C and
2250 W/m^2 °C respectively.
Determine the overall heat transfer
coefficient *
Your answer
The thermal conductivity of a sheet of rigid, extruded insulation is reported to be k = 0.029 W/m-K. The measured temperature
difference across a 25-mm-thick sheet of the material is T – T2 = 12°C.
(a) What is the heat flux through a 3 m x 3 m sheet of the insulation, in W/m2?
(b) What is the rate of heat transfer through the sheet of insulation, in W?
(c) What is the thermal resistance of the sheet due to conduction, in K/W?
Chapter 5 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 5 - Consider a thin electrical heater attached to a...Ch. 5 - The inner surface of a plane wall is insulated...Ch. 5 - A microwave oven operates on the principle that...Ch. 5 - A plate of thickness 2L, surface area As, mass M,...Ch. 5 - For each of the following cases, determine an...Ch. 5 - Steel balls 12 mm in diameter are annealed by...Ch. 5 - Consider the steel balls of Problem 5.6, except...Ch. 5 - The heat transfer coefficient for air flowing over...Ch. 5 - A solid steel sphere (AISI 1010), 300 mm in...Ch. 5 - A flaked cereal is of thickness 2L=1.2mm. The...
Ch. 5 - The base plate of an iron has a thickness of L=7mm...Ch. 5 - Thermal energy storage systems commonly involve a...Ch. 5 - A tool used for fabricating semiconductor devices...Ch. 5 - A copper sheet of thickness 2L=2mm has an initial...Ch. 5 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 5 - A thermal energy storage unit consists of a large...Ch. 5 - Small spherical particles of diameter D=50m...Ch. 5 - A spherical vessel used as a reactor for producing...Ch. 5 - Batch processes are often used in chemical and...Ch. 5 - An electronic device. such as a power transistor...Ch. 5 - Molecular electronics is an emerging field...Ch. 5 - A plane wall of a furnace is fabricated from plain...Ch. 5 - A steel strip of thickness =12mm is annealed by...Ch. 5 - In a material processing experiment conducted...Ch. 5 - Plasma spray-coating processes are often used to...Ch. 5 - The plasma spray-coating process of Problem 5.25...Ch. 5 - A chip that is of length L=5mm on a side and...Ch. 5 - Consider the conditions of Problem 5.27. In...Ch. 5 - A long wire of diameter D=1mm is submerged in an...Ch. 5 - Consider the system of Problem 5.1 where the...Ch. 5 - Shape memory alloys (SMAs) are metals that undergo...Ch. 5 - Before being injected into a furnace, pulverized...Ch. 5 - As noted in Problem 5.3, microwave ovens operate...Ch. 5 - A metal sphere of diameter D, which is at a...Ch. 5 - A horizontal structure consists of an LA=10...Ch. 5 - As permanent space stations increase in size....Ch. 5 - Thin film coatings characterized by high...Ch. 5 - A long. highly polished aluminum rod of diameter...Ch. 5 - Thermal stress testing is a common procedure used...Ch. 5 - The objective of this problem is to develop...Ch. 5 - In thermomechanical data storage, a processing...Ch. 5 - The melting of water initially at the fusion...Ch. 5 - Consider the series solution, Equation 5.42, for...Ch. 5 - Consider the one-dimensional wall shown in the...Ch. 5 - Copper-coated, epoxy-tilled fiberglass circuit...Ch. 5 - Circuit boards are treated by heating a stack of...Ch. 5 - A constant-property, one-dimensional plane slab of...Ch. 5 - Referring to the semiconductor processing tool of...Ch. 5 - Annealing is a process by which steel is reheated...Ch. 5 - Consider an acrylic sheet of thickness L=5mm that...Ch. 5 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 5 - Steel is sequentially heated and cooled (annealed)...Ch. 5 - Stone mix concrete slabs are used to absorb...Ch. 5 - During transient operation, the steel nozzle of a...Ch. 5 - Two plates of the same material and thickness L...Ch. 5 - In a tempering process, glass plate, which is...Ch. 5 - The strength and stability of tires may be...Ch. 5 - A plastic coating is applied to wood panels by...Ch. 5 - A long rod of 60-mm diameter and thermophysical...Ch. 5 - A long cylinder of 30-mm diameter, initially at a...Ch. 5 - A long pyroceram rod of diameter 20 mm is clad...Ch. 5 - A long rod 40 mm in diameter, fabricated from...Ch. 5 - A cylindrical stone mix concrete beam of diameter...Ch. 5 - A long plastic rod of 30-mm diameter...Ch. 5 - As part of a heat treatment process, cylindrical,...Ch. 5 - In a manufacturing process, long rods of different...Ch. 5 - The density and specific heat of a particular...Ch. 5 - In heat treating to harden steel ball bearings...Ch. 5 - A cold air chamber is proposed for quenching steel...Ch. 5 - Stainless steel (AISI 304) ball bearings. which...Ch. 5 - A sphere 30 mm in diameter initially at 800K is...Ch. 5 - Spheres A and B are initially at 800K. and they...Ch. 5 - Spheres of 40-mm diameter heated to a uniform...Ch. 5 - To determine which parts of a spider's brain are...Ch. 5 - Consider the packed bed operating conditions of...Ch. 5 - Two large blocks of different materials. such as...Ch. 5 - A plane wall of thickness 0.6 m (L=0.3m) is made...Ch. 5 - Asphalt pavement may achieve temperatures as high...Ch. 5 - A thick steel slab...Ch. 5 - A tile-iron consists of a massive plate maintained...Ch. 5 - A simple procedure for measuring surface...Ch. 5 - An insurance company has hired you as a consultant...Ch. 5 - A procedure for determining the thermal...Ch. 5 - A very thick slab with thermal diffusivity...Ch. 5 - Standards for firewalls may be based on their...Ch. 5 - It is well known that, although two materials are...Ch. 5 - Two stainless steel plates...Ch. 5 - Special coatings are often formed by depositing...Ch. 5 - When a molten metal is cast in a mold that is a...Ch. 5 - Joints of high quality can be formed by friction...Ch. 5 - A rewritable optical disc (DVD) is formed by...Ch. 5 - Ground source heat pumps operate by using the...Ch. 5 - To enable cooking a wider range of foods in...Ch. 5 - Derive an expression for the ratio of the total...Ch. 5 - The structural components of modem aircraft are...Ch. 5 - Consider the plane wall of thickness 2L, the...Ch. 5 - Problem 4.9 addressed radioactive wastes stored...Ch. 5 - Derive an expression for the ratio of the total...Ch. 5 - Prob. 5.107PCh. 5 - Prob. 5.108PCh. 5 - A thin rod of diameter D is initially in...Ch. 5 - A one-dimensional slab of thickness 2L is...Ch. 5 - Prob. 5.114PCh. 5 - Prob. 5.115PCh. 5 - A molded plastic product...Ch. 5 - Prob. 5.133PCh. 5 - A thin circular disk is subjected to induction...Ch. 5 - Two very long (in the direction normal to the...Ch. 5 - Prob. 5S.2PCh. 5 - Prob. 5S.3PCh. 5 - Estimate the time required to cook a hot dog in...Ch. 5 - Prob. 5S.7PCh. 5 - Prob. 5S.9PCh. 5 - Prob. 5S.10PCh. 5 - Prob. 5S.11PCh. 5 - Prob. 5S.13P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.4 To measure thermal conductivity, two similar 1-cm-thick specimens are placed in the apparatus shown in the accompanying sketch. Electric current is supplied to the guard heater, and a wattmeter shows that the power dissipation is 10 W. Thermocouples attached to the warmer and to the cooler surfaces show temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the material at the mean temperature in W/m K. Problem 1.4arrow_forward1.1 On a cold winter day, the outer surface of a 0.2-m-thick concrete wall of a warehouse is exposed to temperature of –5°C, while the inner surface is kept at 20°C. The thermal conductivity of the concrete is 1.2 W/m K. Determine the heat loss through the wall, which is 10-m long and 3-m high. Problem 1.1arrow_forward2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from one side of an electronic device 1 m wide and 1 m tall. The fins are to be rectangular in cross section, 2.5 cm long and 0.25 cm thick, as shown in the figure. There are to be 100 fins per meter. The convection heat transfer coefficient, both for the wall and the fins, is estimated to be K. With this information determine the percent increase in the rate of heat transfer of the finned wall compared to the bare wall.arrow_forward
- One end of a 0.3-m-long steel rod is connected to a wall at 204C. The other end is connected to a wall that is maintained at 93C. Air is blown across the rod so that a heat transfer coefficient of 17W/m2 K is maintained over the entire surface. If the diameter of the rod is 5 cm and the temperature of the air is 38C, what is the net rate of heat loss to the air?arrow_forward20-m pipe has an outside diameter of 50 mm. Pipe is insulated with a layer of asbestos, then followed by a layer of cork. Inside and outside diameter of the cork is 77 mm and 80 mm, respectively. If the temperature drop from pipe to cork is 1165°C, calculate the inside diameter of the pipe (mm). The rate of the heat transfer is 8778 W. The thermal conductivity of steam pipe, asbestos and cork are 0.045 kW/m-K, 0.058 W/m-K and 0.043 W/m-K respectively.arrow_forwardIt is designed in such a way that the internal temperature of a commercial heat treatment furnace can reach up to 165 oC. All surfaces of the furnace consist of firebrick (10 cm), insulation material and sheet metal (3mm) from the inside out. Given that the outdoor temperature is 22 oC, the outer sheet will be allowed to go up to 35 oC, which is a temperature that will not be disturbed by hand contact. In this case, determine the insulation material thickness to be used. Insulation material thermal conductivity coefficient is 0.066 insulation W / m oC, 60 W / m oC for sheet metal and 115 W / m oC for firebrick. Indoor heat transfer coefficient will be accepted as 25 W / m2 oC and 12 W / m2 oC for outdoor environment.arrow_forward
- QUESTION 3 A steel pipe 150mm external diameter conveys steam at a temperature of 260°C and is covered by two layers of lagging, each 50mm thick. The thermal conductivity coefficient of the inside layer of lagging is 0.0865W/mK while that of the outside layer is 0.0952W/mK. The outside surface temperature of the steel pipe can be taken as being the same temperature of the steam. The ambient temperature is 27°C and the heat transfer coefficient of the outside surface is 15W/m2K. Calculate: 3.1 the heat lost/hr for a pipe length of 30m;arrow_forwardThe temperatures on the faces of a plane wall 20 cm thick are 400 and 90 ℃. The wall is constructed of a special glass with the following properties: k = 0.8 W∙m-1K-1, ρ = 2750 kgm-3, cP = 0.86 kJkg-1K-1. What is the heat flux (q") through the wall at steady-state conditions?arrow_forwardThe thermal conductivity of a sheet of rigid, extruded insulation is reported to be k = 0.029 W/m-K. The measured temperature difference across a 25-mm-thick sheet of the material is T| – T2 = 10°C. (a) What is the heat flux through a 3 m x 3 m sheet of the insulation, in W/m?? (b) What is the rate of heat transfer through the sheet of insulation, in W? (c) What is the thermal resistance of the sheet due to conduction, in K/W? Part A What is the heat flux through a 3 m x 3 m sheet of the insulation, in W/m2? i W/m?arrow_forward
- It is designed in such a way that the internal temperature of a commercial heat treatment furnace can reach up to 165 oC. All surfaces of the furnace consist of firebrick (10 cm), insulation material and sheet metal (3mm) from the inside out. Given that the outdoor temperature is 22 oC, the outer sheet will be allowed to go up to 35 oC, which is a temperature that will not disturb in contact with hands. In this case, determine the insulation material thickness to be used. The thermal conductivity coefficient of the insulation material is insulation 0.066 W / m oC, 60 W / m oC for sheet metal and 115 W / m oC for firebrick. Indoor heat transfer coefficient will be accepted as 25 W / m2 oC and 12 W / m2 oC for outdoor environment.arrow_forwardA 30 mm diameter copper sphere and a 30 mm copper cube are both heated in a furnace to 923 K. They are then annealed in an air at 378K. If the external heat transfer coefficient h is 80 W/m2.K in both cases, what is the temperature of the sphere and of the cube at the end of 6 minutesarrow_forward(3) A thick steel slab is initially at a uniform temperature of 25°C. When the slab is exposed to hot flue gases, the surface temperature suddenly changes to 450°C. Make calculations for the temperature in a plane 250 mm from the slab surface 5 hours after the operation of change in surface temperature. Find also the heat flowing into 2 square meters of this plane and the total energy flowing through the surface during the 5 hour period. It may be presumed that for steel, thermal conductivity k = 160 kJ/m hr deg, density p = 8000 kg/m3 and the specific heat capacity Cp = 0.48 kJ/kg deg. Activate Windows Go to Settings to activate Win 1:36 7/13 P Type here to search 14117 detete home Snut ort sc 144 & backspace lock E R home enter D G pause esned 1 shift B N M en alt ctriarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license