Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5S.13P
To determine
The center line temperature of the rod after 30 second at an exposed end.
The center line temperature of the rod at an axial distance of 6 mm from the end.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Read the question carefully and give me right solution according to the question.
A solid copper sphere (k = 393 W/mK), 10 mm in diameter, initially at 800C is placed in an air stream at 300 C. The temperature is dropped to 650C after 61 seconds. Calculate the value of convection coefficient. Assume properties as ρ= 8925 kg/m3, C = 397 J/kg K.
In the vulcanization of tires, the carcass is placed into a jig and steam at 149°C is admitted
suddenly to both sides. If the tire thickness is 2.5 cm, the initial temperature is 21°C, the
heat transfer coefficient between the tire and the steam is 150 W/(m2 K), and the specific
heat of the rubber is 1650 J/(kg K), estimate the time required for the center of the rubber
to reach 132°C
A 10 cm outer diameter pipe carrying saturated steam at a temperature of 195C is lagged
to 20 cm diameter with magnesia and further lagged with laminated asbestos to 25 cm
diameter. The entire pipe is further protected by a layer of canvas. If the temperature under
the canvas is 20°C, find the mass of steam condensed in 8 hrs on a 100m length of pipe and
interface temperature. Take thermal conductivity of magnesia as 0.07 W/m – K and that of
asbestos as 0.082 W/m – k. Neglect the thermal conductivity of the pipe material. The latent
heat of steam for given conditions can be taken as 1951 kJ/kg–K.
Chapter 5 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 5 - Consider a thin electrical heater attached to a...Ch. 5 - The inner surface of a plane wall is insulated...Ch. 5 - A microwave oven operates on the principle that...Ch. 5 - A plate of thickness 2L, surface area As, mass M,...Ch. 5 - For each of the following cases, determine an...Ch. 5 - Steel balls 12 mm in diameter are annealed by...Ch. 5 - Consider the steel balls of Problem 5.6, except...Ch. 5 - The heat transfer coefficient for air flowing over...Ch. 5 - A solid steel sphere (AISI 1010), 300 mm in...Ch. 5 - A flaked cereal is of thickness 2L=1.2mm. The...
Ch. 5 - The base plate of an iron has a thickness of L=7mm...Ch. 5 - Thermal energy storage systems commonly involve a...Ch. 5 - A tool used for fabricating semiconductor devices...Ch. 5 - A copper sheet of thickness 2L=2mm has an initial...Ch. 5 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 5 - A thermal energy storage unit consists of a large...Ch. 5 - Small spherical particles of diameter D=50m...Ch. 5 - A spherical vessel used as a reactor for producing...Ch. 5 - Batch processes are often used in chemical and...Ch. 5 - An electronic device. such as a power transistor...Ch. 5 - Molecular electronics is an emerging field...Ch. 5 - A plane wall of a furnace is fabricated from plain...Ch. 5 - A steel strip of thickness =12mm is annealed by...Ch. 5 - In a material processing experiment conducted...Ch. 5 - Plasma spray-coating processes are often used to...Ch. 5 - The plasma spray-coating process of Problem 5.25...Ch. 5 - A chip that is of length L=5mm on a side and...Ch. 5 - Consider the conditions of Problem 5.27. In...Ch. 5 - A long wire of diameter D=1mm is submerged in an...Ch. 5 - Consider the system of Problem 5.1 where the...Ch. 5 - Shape memory alloys (SMAs) are metals that undergo...Ch. 5 - Before being injected into a furnace, pulverized...Ch. 5 - As noted in Problem 5.3, microwave ovens operate...Ch. 5 - A metal sphere of diameter D, which is at a...Ch. 5 - A horizontal structure consists of an LA=10...Ch. 5 - As permanent space stations increase in size....Ch. 5 - Thin film coatings characterized by high...Ch. 5 - A long. highly polished aluminum rod of diameter...Ch. 5 - Thermal stress testing is a common procedure used...Ch. 5 - The objective of this problem is to develop...Ch. 5 - In thermomechanical data storage, a processing...Ch. 5 - The melting of water initially at the fusion...Ch. 5 - Consider the series solution, Equation 5.42, for...Ch. 5 - Consider the one-dimensional wall shown in the...Ch. 5 - Copper-coated, epoxy-tilled fiberglass circuit...Ch. 5 - Circuit boards are treated by heating a stack of...Ch. 5 - A constant-property, one-dimensional plane slab of...Ch. 5 - Referring to the semiconductor processing tool of...Ch. 5 - Annealing is a process by which steel is reheated...Ch. 5 - Consider an acrylic sheet of thickness L=5mm that...Ch. 5 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 5 - Steel is sequentially heated and cooled (annealed)...Ch. 5 - Stone mix concrete slabs are used to absorb...Ch. 5 - During transient operation, the steel nozzle of a...Ch. 5 - Two plates of the same material and thickness L...Ch. 5 - In a tempering process, glass plate, which is...Ch. 5 - The strength and stability of tires may be...Ch. 5 - A plastic coating is applied to wood panels by...Ch. 5 - A long rod of 60-mm diameter and thermophysical...Ch. 5 - A long cylinder of 30-mm diameter, initially at a...Ch. 5 - A long pyroceram rod of diameter 20 mm is clad...Ch. 5 - A long rod 40 mm in diameter, fabricated from...Ch. 5 - A cylindrical stone mix concrete beam of diameter...Ch. 5 - A long plastic rod of 30-mm diameter...Ch. 5 - As part of a heat treatment process, cylindrical,...Ch. 5 - In a manufacturing process, long rods of different...Ch. 5 - The density and specific heat of a particular...Ch. 5 - In heat treating to harden steel ball bearings...Ch. 5 - A cold air chamber is proposed for quenching steel...Ch. 5 - Stainless steel (AISI 304) ball bearings. which...Ch. 5 - A sphere 30 mm in diameter initially at 800K is...Ch. 5 - Spheres A and B are initially at 800K. and they...Ch. 5 - Spheres of 40-mm diameter heated to a uniform...Ch. 5 - To determine which parts of a spider's brain are...Ch. 5 - Consider the packed bed operating conditions of...Ch. 5 - Two large blocks of different materials. such as...Ch. 5 - A plane wall of thickness 0.6 m (L=0.3m) is made...Ch. 5 - Asphalt pavement may achieve temperatures as high...Ch. 5 - A thick steel slab...Ch. 5 - A tile-iron consists of a massive plate maintained...Ch. 5 - A simple procedure for measuring surface...Ch. 5 - An insurance company has hired you as a consultant...Ch. 5 - A procedure for determining the thermal...Ch. 5 - A very thick slab with thermal diffusivity...Ch. 5 - Standards for firewalls may be based on their...Ch. 5 - It is well known that, although two materials are...Ch. 5 - Two stainless steel plates...Ch. 5 - Special coatings are often formed by depositing...Ch. 5 - When a molten metal is cast in a mold that is a...Ch. 5 - Joints of high quality can be formed by friction...Ch. 5 - A rewritable optical disc (DVD) is formed by...Ch. 5 - Ground source heat pumps operate by using the...Ch. 5 - To enable cooking a wider range of foods in...Ch. 5 - Derive an expression for the ratio of the total...Ch. 5 - The structural components of modem aircraft are...Ch. 5 - Consider the plane wall of thickness 2L, the...Ch. 5 - Problem 4.9 addressed radioactive wastes stored...Ch. 5 - Derive an expression for the ratio of the total...Ch. 5 - Prob. 5.107PCh. 5 - Prob. 5.108PCh. 5 - A thin rod of diameter D is initially in...Ch. 5 - A one-dimensional slab of thickness 2L is...Ch. 5 - Prob. 5.114PCh. 5 - Prob. 5.115PCh. 5 - A molded plastic product...Ch. 5 - Prob. 5.133PCh. 5 - A thin circular disk is subjected to induction...Ch. 5 - Two very long (in the direction normal to the...Ch. 5 - Prob. 5S.2PCh. 5 - Prob. 5S.3PCh. 5 - Estimate the time required to cook a hot dog in...Ch. 5 - Prob. 5S.7PCh. 5 - Prob. 5S.9PCh. 5 - Prob. 5S.10PCh. 5 - Prob. 5S.11PCh. 5 - Prob. 5S.13P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please show all steps not Ai generated they have been wrong and I need to understand whats goin on. A steel sphere (AISI 1010), 100 mm in diameter, is coated with a dielectric material layer of thickness 2 mm and thermal conductivity 0.04 W/m • K. The coated sphere is initially at a uniform temperature of 500°C and is suddenly quenched in a large oil bath for which To = 100°C and h = 3000 W/m • K. Estimate the time required for the coated sphere temperature to reach 150°C. Hint: Neglect the effect of energy storage in the dielectric material, since its thermal capacitance (pcV) is small compared to that of the steel sphere.arrow_forwardParrow_forward8 mm diameter carbon steel (ρ = 7833 kg / m3, k = 54 W / (m K), Cp = 0.466 kJ / (kg K)) ball-shaped balls at 35°C with a temperature of 900°C for annealing heat treatment put in the oven. During this heating process, the coefficient of convection is 40 W / (m2K). The balls are wanted to be brought to a temperature of about 900°C in this oven. When the balls reach 899°C, the heating process is considered sufficient and taken from the oven. a) Find the time required for the balls to reach 899°C. b) After the balls are taken out of the oven, they are left in the ambient temperature and cooled to 100°C. Find the heat released by a ball during this cooling process.arrow_forward
- A sphere of 80 mm diameter (k=50 W/m.K and α=1.5x10-6 m2/s) is initially at a uniform, elevated temperature, and is quenched in an oil bath maintained at 30 °C. The convection coefficient for the cooling process is 1100 W/m2K. At a certain time, the surface temperature of the sphere is measured to be 120 °C. What is the corresponding center temperature of the sphere?arrow_forwardA steel sphere (AISI 1010), 100 mm in diameter, is coated with a dielectric material layer of thickness 1.75 mm and thermal conductivity 0.04 W/m.K. The coated sphere is initially at a uniform temperature of 500°C and is suddenly quenched in a large oil bath for which T = 100°C and h = 3000 W/m².K. Estimate the time, in h, required for the coated sphere temperature to reach 150°C. Hint: Neglect the effect of energy storage in the dielectric material, since its thermal capacitance (pc)is small compared to that of the steel sphere. t = harrow_forwardInclude drawingarrow_forward
- Derive the temperature distribution equation for the adiabatic fin tip. Boundary condition x=0, theta = theta b. theta/theta b= cosh*(m*(L-x)) / cosh*(mL) Please Helparrow_forwardA long wire of diameter D = 2 mm is submerged in an oil bath of temperature T∞ = 23°C. The wire has an electrical resistance per unit length of Re′=0.01 Ω/m. If a current of I = 180 A flows through the wire and the convection coefficient is h = 529 W/m2 · K, what is the steady-state temperature of the wire? From the time the current is applied, how long does it take for the wire to reach a temperature that is within 2°C of the steady-state value? The properties of the wire are ρ = 2,334 kg/m3, c = 537 J/kg · K, and k = 43 W/m · K.arrow_forwardA 10.0-cm cube of stainless steel is initially at 500oC. It is suddenly immersed in a tank of oil maintained at 100oC. The convection coefficient is 1000 W/m2×oC. Calculate the temperature at the center of one face after 1 min.Data: stainless steel properties, k = 22 W/m×oC, r = 7,689 kg/m3, c = 460 J/kg×oC.arrow_forward
- Steel balls 12 mm in diameter are annealed by heating to 1100 K and then slowly cooling to 360 K in an air environment for which T. = 325 Kand h = 20 W/m2-K. Assuming the properties of the steel to be k = 40 W/m-K,p = 7800 kg/m, and c = 600 J/kg-K, estimate the time required for the cooling process. The time required for the cooling process isi h.arrow_forwardWhat’s the correct answer for this please ?arrow_forwardA brass rod 100 mm long and 5 mm in diameter extends horizontally from a casting at 200 °C. Conductivity k=133 W/m/K. The rod is in an air environment with To = 20 °C and h = 30 W/m²/K. What is the temperature of the rod 25, 50, and 100 mm from the casting?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license