Consider the plane wall of thickness 2L, the infinite cylinder of radius
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Fundamentals of Heat and Mass Transfer
- 1. A beverage cooler is in the shape of a cube, 42 cm on each inside edge. Its 3.0-cm thick wall are made up of plastic (kr = 0.050 W/mK). When the outside temperature is 20°C, how much ice will melt each hour? Tice is 0°C. 2. One of the possible mechanisms of heat transfer in human body is conduction through body fat. Suppose that heat travels through 0.03 m of fat in reaching the skin, which has a total surface area of 1.7 m² and a temperature of 34°C. Find the amount of heat that reaches the skin in half an hour, if the temperature at the body, interior is maintained at the normal value 37°C ? Thermal conductivity of body fat is k = 0.2 J/sm°C. 3. The air in a room is at 25°C and outside temperature is 0°C. The window of the room has an area of 2m² and thickness 2mm. Calculate the rate of loss of heat by conduction through window ? Thermal conductivity for glass is 1 Wm¯'degree!.arrow_forwardYou are asked to estimate the maximum human body temperature if the metabolic heat produced in your body could escape only by tissue conduction and later on the surface by convection. Simplify the human body as a cylinder of L=1.8 m in height and ro= 0.15 m in radius. Further, simplify the heat transfer process inside the human body as a 1-D situation when the temperature only depends on the radial coordinater from the centerline. The governing dT +q""=0 dr equation is written as 1 d k- r dr r = 0, dT dr =0 dT r=ro -k -=h(T-T) dr (k-0.5 W/m°C), ro is the radius of the cylinder (0.15 m), h is the convection coefficient at the skin surface (15 W/m² °C), Tair is the air temperature (30°C). q" is the average volumetric heat generation rate in the body (W/m³) and is defined as heat generated per unit volume per second. The 1-D (radial) temperature distribution can be derived as: T(r) = q"¹'r² qr qr. + 4k 2h + 4k +T , where k is thermal conductivity of tissue air (A) q" can be calculated…arrow_forwardquestion A B and Carrow_forward
- Solve using the methodology : Known, Find, Schematic Diagram, Assumptions, Properties, Analysis and Comments.arrow_forwardi need the answer quicklyarrow_forward3.6 Heat losses through windows in buildings are substantial. What would be the percentage reduction in heat loss that would be mitigated by replacing a window containing a single pane of glass with (a) double-pane low-E insulating glass or (b) a 3-inch-thick sheet of expanded polystyrene sheet? The quoted R values for these items are: • single pane of glass: 0.90 ft 2 hr ° F/Btu, • double pane of low-E insulating glass: 2.3 ft 2 hr ° F/Btu, • 1-inch-thick sheet of polystyrene sheet: 4.0 ft 2 hr ° F/Btu.arrow_forward
- What’s the correct answer for this please ?arrow_forwardQuestion 5: Z=62 a. An iron sphere of mass (Z + 300)g is kept in a container having boiling water (100 °C). If the temperature of the sphere is 25.5°C, how much heat energy is absorbed by the iron sphere? Consider the specific heat of iron as 452J/kg. b. The wall of an industrial furnace is constructed from (Z + 3) cm thick fireclay brick having a thermal conductivity of 1.7 W/mK. Measurements made during steady-state operation reveal temperatures of 530°C and 375°C at the inner and outer surfaces, respectively. Find the rate of heat loss through a wall which is (Z + 5) cm by (Z + 3) m on a side.arrow_forwardThe diagram below illustrates a simplified version of the Jet Propulsion Laboratory's 25-ft space simulator chamber. Within it, tests are run for deep space probes and their components. In this particular experiment, a sensor assembly with its housing is placed inside. The sensor-housing electronics create heat such that q=3181.0 W exits the assembly's top surface into the chamber. The chamber itself is under vacuum, and its walls are at cryogenic temperatures to simulate conditions in space. Surfaces 1 and 2 are flat. Assume they are flush. The top surface of the chamber, Surface 4, can be approximated as a perfectly insulated, flat ceiling. The exposed surface of the floor, Surface 2, is a black, donut- shaped surface. Additional surface information can be seen below, including various parameters and dimensions. Assume all surfaces are opaque and diffuse, and conditions are at steady-state. PARAMETERS & DIMENSIONS Surface 1: A = 7.07 m²; diameter d; = 3 m; &₁ = 0.5; Surface 2: A₂ =…arrow_forward
- 1. Temperatures are measured at the left-hand face and at a point 4 cm from the left-hand face of the planar wall shown in the figure below. These temperatures are T₁ = 45.3 °C and T* = 21.2 °C. The heat flow through the planar wall is steady and one dimensional. What is the value of T2 at the right-hand surface of the wall? TI T* 4 cm 10 cm T2arrow_forward= Consider a large plane wall of thickness L=0.3 m, thermal conductivity k = 2.5 W/m.K, and surface area A = 12 m². The left side of the wall at x=0 is subjected to a net heat flux of ɖo = 700 W/m² while the temperature at that surface is measured to be T₁ = 80°C. Assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary equations for steady one- dimensional heat conduction through the wall, (b) obtain a relation for the variation of the temperature in the wall by solving the differential equation, and (c) evaluate the temperature of the right surface of the wall at x=L. Ti до L Xarrow_forwardHello, pleae answer this, Thank you. Much appreciatedarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY