Thermal energy storage systems commonly involve a packed bed of solid spheres, through which a hot gas flows if the system is being charged, or a cold gas if it is being discharged. In a charging process, heat transfer from the hot gas increases thermal energy stored within the colder spheres; during discharge, the stored energy decreases as heat is transferred from the warmer spheres to the cooler gas.
Consider a packed bed of 75-mm-diameter aluminum spheres
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Fundamentals of Heat and Mass Transfer
- Determine the rate of heat transfer per meter length to a light oil flowing through a 2.5-cm-ID, 60-cm-long copper tube at a velocity of 0.03 m/s. The oil enters the tube at 16C, and the tube is heated by steam condensing on its outer surface at atmospheric pressure with a heat transfer coefficient of 11.3 kW/m K. The properties of the oil at various temperatures are listed in the following table: Temperature, T(C) 15 30 40 65 100 (kg/m3) 912 912 896 880 864 c(kJ/kgK) 1.80 1.84 1.925 2.0 2.135 k(W/mK) 0.133 0.133 0.131 0.129 0.128 (kg/ms) 0.089 0.0414 0.023 0.00786 0.0033 Pr 1204 573 338 122 55arrow_forwardA welding heat source is capable of transferring 160 kJ/min to the surface of a metal part. The heated area is approximately circular, and the heat intensity decreases with increasing radius as follows: 50% of the power is transferred within a circle of diameter = 0.25 cm and 75% is transferred within a concentric circle of diameter = 0.625 cm. What are the power densities in (a) the 0.25 cm diameter inner circle and (b) the 0.625 cm diameter ring that lies around the inner circle? (c) Are these power densities sufficient for melting metal?arrow_forwardA power station uses oil-fired boilers which are supplied with fuel from 4 cylindrical tanks, each with 12 m diameter and 11 m high. The calorific value of the oil is 38,039 kJ/kg and its relative density is 0.78. The output from the power station is 77 MW. Assuming the only 21% of the heat input is converted to into electrical energy output, how long will the boilers run (in days) on the oil in the tanks. Correct Answer: 4.7 ± 0.1arrow_forward
- Tony Stark, a brilliant inventor, has designed a special suit/armor that has an inbuilt small but concentrated high-powered reactor as its power source. The only problem is there is lot of heat generated in the reactor that needs to be cooled for the suit to be actually wearable. Stark needs a heat exchanger mounted on the suit to dissipate the excess heat generated in the reactor. He found a 10 cm x 20-cmx5-cm space on the armor for the heat exchanger. He chose a liquid (specific heat 2.8 kJ/kg°C) that circulates around the reactor and takes heat away from the reactor and then enters the heat exchanger with mass flow rate of 0.2 kg/s at a temperature of 180°C. It comes out of the heat exchanger at a temperature of 10°C. The other fluid in the heat exchanger is a phase-changing liquid that remains at -23°C as it changes phase from saturated liquid to a mixture of liquid and vapor during the heat exchange process. The latent heat vaporization for the phase-changing liquid is 560 kJ/kg.…arrow_forwardAn electric generator at a power plant produces energy by passing superheated steam from a high temperature container (reservoir), through a pipe connected to a series of fans, and then into a low temperature reservoir. As the steam passes across the blades of the fans some of the heat energy of the steam is transformed into mechanical energy, which turns the fans which in turn are connected to a generator, which in turn converts the mechanical energy into electrical energy. If the high temperature steam has a temperature of 436.7 K and the low temperature reservoir has a temperature of 106.7 K, what is the Carnot efficiency of this process?arrow_forwardThe boiling temperature of oxygen at atmospheric pressure at sea level (1 atm) is -183ºC. Therefore, oxygen is used in low temperature scientific studies since the temperature of liquid oxygen in a tank open to the atmosphere remains constant at -183ºC until the liquid oxygen in the tank is depleted. Any heat transfer to the tank results in the evaporation of some liquid oxygen, which has a heat of vaporization of 213 kJ/kg and a density of 1140 kg/m3at 1 atm. Consider a 4 m diameter spherical tank initially filled with liquid oxygen at 1 atm and -183ºC. The tank is exosed to 20ºC ambient ait with a heat transfer coefficient of 25 W/m2. ºC. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the oxygen inside. Disregarding any radiation heat exchange, determine the rate of evaporation of the liquid oxygen in the tank as a result of the heat transfer from the ambient airarrow_forward
- A bare fuel rod has a diameter of 0.373 in and length of 12 ft. The volumetric heat generation rate for this rod is q′′′ = 10,000 kW/ft3. The heat produced by the rod is removed by water used as the coolant, at 2250 psia and 575 F. Find the heat transfer coefficient between the bare fuel rod and the coolant.The fuel rod surface temperature is 675 Farrow_forwardThe boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm pressure) is -196 °C. Therefore, nitrogen is commonly used in low-temperature scientific studies since the temperature of liquid nitrogen in a tank open to the atmosphere will remain constant at -196 °C until it is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m3 at 1 atm. Consider a 3-m-diameter spherical tank that is initially filled with liquid nitrogen at 1 atm and -196 °C. The tank is exposed to ambient air at 15° C, with a combined convection and radiation heat transfer coefficient of 35 W/m2⋅K. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Determine the rate of evaporation (in kg/s) of the liquid nitrogen in the tank as a result of the heat transfer from the ambient air if the tank is insulated with…arrow_forwardHow does the science of heat transfer differ from the science of thermodynamics? Give your answers with real-life practical examples.arrow_forward
- 214arrow_forwardHow long should it take to boil an egg? Model the egg as a sphere with radius of 2.3 cm that has properties similar to water with a density of = 1000 kg/m3 and thermal conductivity of k = 0.606 Watts/(mC) and specific heat of c = 4182 J/(kg C). Suppose that an egg is fully cooked when the temperature at the center reaches 70 C. Initially the egg is taken out of the fridge at 4 C and placed in the boiling water at 100 C. Since the egg shell is very thin assume that it quickly reaches a temperature of 100 C. The protein in the egg effectively immobilizes the water so the heat conduction is purely conduction (no convection). Plot the temperature of the egg over time and use the data tooltip in MATLAB to make your conclusion on the time it takes to cook the egg in minutes.arrow_forwardI would like to ask for your expertise in this problem. Thank youarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning