Thin film coatings characterized by high resistance to abrasion and fracture may be formed by using microscale composite particles in a plasma spraying process. A spherical particle typically consists of a ceramic core, such as tungsten carbide (WC), and a metallic shell, such as cobalt (Co). The ceramic provides the thin film coating with its desired hardness at elevated temperatures, while the metal serves to coalesce the particles on the coated surface and to inhibit crack formation. In the plasma spraying process, the particles are injected into a plasma gas jet that heats them to a temperature above the melting point of the metallic casing and melts the casing before the panicles impact the surface. Consider spherical particles comprised of a WC core of diameter
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Fundamentals of Heat and Mass Transfer
- For the 21.5-cm thick multilayer assembly as listed below, please estimate the temperature on the interface between material layers 3 and 4 Material layers - counted from the interior side: (1) 1.5 - cm gypsum board; (2) 4.0-cm - concrete of density - 2400-kg/m3; (3) 10-cm of XPS foam; (4) 6.0-cm - concrete of density - 2400-kg/m3 Interior film resistance is Ri = 0.121 m2K/W Exterior film resistance is Re - 0.029 m2K/W Internal temperature +20 degC External Temperature - 20 degC All necessary material properties can be found in the ASHRAE Handbook of Fundamentals, or other sourcesarrow_forwardMetal spheres, 10 mm in diameter, are to be annealed by heating them to 827°C then allowing them to cool slowly in air at 27°C to the point where they are in thermal equilibrium with the air. 2000 balls are annealed in one hour’s time. What is the total rate of their heat transfer if they are made of steel, lead, or copper? a.Sketch the problem. b.Draw lines identifying the control volume, or control mass. c.Identify the states with numbers, letters, or descriptions such as “in” and “out”. d.Write down the knowns and unknowns. e.Identify what is being asked for. f.State all assumptions.arrow_forwardThe Diamond Ring Solution. The processing chip on the computer that controls the navigation equipment on your spacecraft is overheating. Unless you fix the problem, the chip will be damaged and the navigation system will shut down. You open the panel and find that the small copper disk that was supposed to bridge the gap between the smooth top of the chip and the cooling plate is missing, leaving a 2.0 mm gap between them. In this configuration, the heat cannot escape the chip at the required rate. You notice by the thin smudge of thermal grease (a highly thermally conductive material used to promote good thermal contact between surfaces) that the missing copper disk was 2.0 mm thick and had a diameter of 1.0 cm. You know that the chip is designed to run below 70 °C, and the copper cooling plate is held at a constant 5.0 °C. (a) What was the rate of heat flow from the chip to the copper plate when the original copper disk was in place and the chip was at its maximum operating…arrow_forward
- Define the Work Associated with the Stretching of a Liquid Film?arrow_forwardThe Diamond Ring Solution. The processing chip on the computer that controls the navigation equipment on your spacecraft is overheating. Unless you fix the problem, the chip will be damaged and the navigation system will shut down. You open the panel and find that the small copper disk that was supposed to bridge the gap between the smooth top of the chip and the cooling plate is missing, leaving a 2.2 mm gap between them. In this configuration, the heat cannot escape the chip at the required rate. You notice by the thin smudge of thermal grease (a highly thermally conductive material used to promote good thermal contact between surfaces) that the missing copper disk was 2.2 mm thick and had a diameter of 1.3 cm. You know that the chip is designed to run below 75 °C, and the copper cooling plate is held at a constant 5.0 °C. (a) What was the rate of heat flow from the chip to the copper plate when the original copper disk was in place and the chip was at its maximum operating…arrow_forwardAfter going through the production process, thin plates with a length of 0.9m are cooled by suspending them vertically in an atmosphere of quiescent hydrogen at 80°C. To maximize production throughput, the plates are hung as close together as possible. There is a concern however, that if the plates are too close together, the cooling will take longer, costing the company additional money. If the plates are initially at a temperature of 110°C, what is the minimum plate spacing that would avoid interference between their free convection boundary layers? Thermos-physical properties are shown in the table below. Thermal Diffusivity [m2/s] 2.446*10-4 Kinematic Viscosity [m2/s] 1.573*104 Prandtl Number [-] 0.6969arrow_forward
- Solving Thermal Properties Related Problems Estimate the thermal diffusivity of butter at 20°C.arrow_forwardTwo balls (A and B) are made of the same material, heated to the same temperature and allowed to cool in the same medium "same h", when the diameter ratio (D/Dg = 2.0), then the cooling rate ratio (Q/QR) will bearrow_forwardThermal Diffusivity Estimate the thermal diffusivity of butter at 20°C.arrow_forward
- "You did calculations using the simplified HAZ time-temperature formulas, assuming 3D heat flow, and are presenting your final internship conclusions to management. You realize with horror, in the middle of your presentation, that you forgot to label your calculated curves (below). Which curve is which? Pick the best answer A: "Plot 1 is HYPERFILL® and Plot 2 is p-GMAW. Since HYPERFILL® has the higher heat input, it cools more slowly." B: "Plot 2 is HYPERFILL® and Plot 1 is p-GMAW. Since HYPERFILL® has the faster travel speed of the two processes, it cools faster." C: "Plot 1 is p-GMAW and Plot 2 is HYPERFILL®. Since p-GMAW has the slower travel speed, it cools more slowly." D: "Plot 2 is p-GMAW and Plot 1 is HYPERFILL®. Since p-GMAW has the lower heat input, it cools faster" Both (A) and (D)arrow_forwardAfter going through the production process, thin plates with a length of 0.5m are cooled by suspending them vertically in a room with still air at 35°C. To maximize production throughput, the plates are hung as close together as possible. There is a concern however, that if the plates are too close together, the cooling will take longer, costing the company additional money. If the plates are initially at a temperature of 75°C, please answer the following: 1. What is the minimum plate spacing that would avoid interference between their free convection boundary layers? 2. What is the velocity in the x-direction at the upper edge of the plate?arrow_forwardQuestion: At the end of a long race, runners are given a shiny foil sheet to wear. This stops them cooling down too quickly. Suggest why a runner might cool down too quickly if he does not wear a foil sheet? Then explain in brief how the foil sheet reduces heat loss?arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning