A flaked cereal is of thickness
Trending nowThis is a popular solution!
Chapter 5 Solutions
Fundamentals of Heat and Mass Transfer
- Determine the time needed to decrease the temperature of a solid cylinder from 40 C to 35 C if the ambient temperature is equal to 31 C. The cylinder has a length equals to 0.9 m and diameter equals to 100 mm. The heat convective coefficient is equal to 1.3 W/m^2.K. The cylinder has a conductivity equals to 2 W/m.K, a density equals to 1200 kg/m^3 and its Cp is equal to 4.700 kJ/kgK. Select one: a. 83325 s O b. 10500s O c. 45360 s O d. 30050 sarrow_forwardExample 10: Consider a long resistance wire of radius r1 = 0.2 cm and thermal conductivity kwire = 15 W/m·°C in which heat is generated uniformly as a result of resistance heating at a constant rate of g = 50 W/cm3. The wire is embedded in a 0.5-cm-thick layer of ceramic whose thermal conductivity is kceramic = 1.2 W/m·°C. If the outer surface temperature of the ceramic layer is measured to be Ts = 45°C, determine the temperatures at the center of the resistance wire and the interface of the wire and the ceramic layer under steady conditions.arrow_forwardYou leave a pastry in the refrigerator on a plate and ask your roommate to take it out before you get home so you can eat it at room temperature, the way you like it. Instead, your roommate plays video games for hours.When you return, you notice that the pastry is still cold, but the game console has become hot. Annoyed, and knowing that the pastry will not be good if it is microwaved, you warm up the pastry by unplugging the console and putting it in a clean trash bag (which acts as a perfect calorimeter) with the pastry on the plate. After a while, you find thatthe equilibrium temperature is a nice, warm 38.3 °C . You know that the game console has a mass of 2.1 kg. Approximate it as having a uniform initial temperature of 45 °C . The pastry has a mass of 0.16 kg and a specific heat of 3.0 k J/(kg · ºC), and is at a uniform initial temperatureof 4.0 °C . The plate is at the same temperature and has a mass of 0.24 kg and a specific heat of 0.90 J/(kg · ºC) . What is the specific heat…arrow_forward
- THERMODYNAMICS A 1.5kW iron has a 0.5 cm thick brass base plate (p=8,310 kg/m3 and cp = 400 J/kg C) with a surface area of 0.03 m^2. At the start, the iron is in thermal equilibrium with the ambient air temperature of 22 degrees Celsius. What is the shortest time required for the plate temperature to reach 200 degrees Celsius if 95 percent of the heat generated in the resistance wires is transmitted to the plate?arrow_forwardThe inside wall of a furnace is at 2100oF and the outside wall is at 300oF. The wall of a furnace must be designed to transmit no more than 220 Btu/hr-ft2. Two types of bricks are available for construction:TYPE A: k = 0.38 Btu/ hr-ft-R with an allowable maximum temperature of 1400oFTYPE B: k = 0.98 Btu/ hr-ft-R with an allowable maximum temperature of 2300oF Both types of bricks have the same dimensions (9” x 4.5” x 3”) but the cost for Type B brick is twice the cost of Type A brick. Illustrate the order of arrangement of bricks A and B in the furnace wall (with thickness, estimated temperatures at the interface between walls A and B and at the interior and exterior surface, the transport area and direction of transfer included)arrow_forwardThe inside wall of a furnace is at 2100oF and the outside wall is at 300oF. The wall of a furnace must be designed to transmit no more than 220 Btu/hr-ft2. Two types of bricks are available for construction:TYPE A: k = 0.38 Btu/ hr-ft-R with an allowable maximum temperature of 1400oFTYPE B: k = 0.98 Btu/ hr-ft-R with an allowable maximum temperature of 2300oF Both types of bricks have the same dimensions (9” x 4.5” x 3”) but the cost for Type B brick is twice the cost of Type A brick. If a 15 ft2 wall is to be constructed, how many bricks will be used? how many brick A and how many brick B?arrow_forward
- The inside wall of a furnace is at 2100oF and the outside wall is at 300oF. The wall of a furnace must be designed to transmit no more than 220 Btu/hr-ft2. Two types of bricks are available for construction:TYPE A: k = 0.38 Btu/ hr-ft-R with an allowable maximum temperature of 1400oFTYPE B: k = 0.98 Btu/ hr-ft-R with an allowable maximum temperature of 2300oF Both types of bricks have the same dimensions (9” x 4.5” x 3”) but the cost for Type B brick is twice the cost of Type A brick. Model the wall as one-dimensional and determine the most economical arrangement of the bricks. Include:a drawing labeled with all given informationthe variables used in the appropriate places on the drawing (along with values and units, if provided)a thermal circuit showing the paths for heat transmissionequations and calculationsCalculations that show that the maximum temperature for Type A brick does not exceed 1400oFA recommendation for the number and orientation of the bricks. The inside temp is 2100f…arrow_forwardThe inside wall of a furnace is at 2100oF and the outside wall is at 300oF. The wall of a furnace must be designed to transmit no more than 220 Btu/hr-ft2. Two types of bricks are available for construction:TYPE A: k = 0.38 Btu/ hr-ft-R with an allowable maximum temperature of 1400oFTYPE B: k = 0.98 Btu/ hr-ft-R with an allowable maximum temperature of 2300oF Both types of bricks have the same dimensions (9” x 4.5” x 3”) but the cost for Type B brick is twice the cost of Type A brick. What is the rate of heat conduction through wall A? If a 15 ft2 wall is to be constructed, how many bricks will be used? how many brick A and how many brick B?arrow_forward5. A pipe with an outside diameter of 2.5 inches is insulated with 2 inches layer of asbestos (k = 0.396 Btu- in/hr-ft²-°F), followed by a layer of cork 1.5 inches thick (k = 0.30 Btu-in/hr-ft²-°F). If the temperature at the inner surface of the pipe is 290°F and at the outer surface of the cork is 90°F, calculate the heat loss per 100 ft of insulated pipe. (Btu/hr)arrow_forward
- answer provided is correctarrow_forwardA steel ball of density 7800 kg/m³ and specific heat 0.47 kJ/kg-K having 10 cm diameter at 300°C is placed in atmosphere at 30°C. Calculate the initial rate of cooling in °C/sec. Assume convective heat transfer coefficient h = 15W / (m ^ 2) - K . Neglect heat loss by radiation.arrow_forwardThermodynamics: Can you show me how to solve for the answer that is written below? Please show it in step by step solution Thank you!arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning