Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 53QTP
An orthogonal cutting operation is being carried out under the following conditions: to = 0.1 mm, tc = 0.2 mm, width of cut = 4 mm, V = 3 m/s, rake angle = 10°, Fc = 500 N, and Ft = 200 N. Calculate the percentage of the total energy that is dissipated in the shear plane.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
An orthogonal cutting operation is being carried out under the following conditions: t0 = 0.1mm, tc = 0.2 mm, width of cut = 5 mm, V = 2 m/s, rake angle = 10, Fc = 500 N, and Ft =200 N. Calculate the percentage of the total energy that is dissipated in the shear plane
(11,00 Puanlar)
39 An orthogonal cutting operation is being carried out under the following conditions: t0=0,38 mm, tc=0,65 mm, width
of the cut= 2.5 mm, V= 3.5 m/s, rake angle=D 6 , Fc= 515 N, and Ft= 210 N. Calculate the percentage of the total energy
that is dissipated in the shear plane.
The power input in cutting= F.V
Power for shearing=F,V,
t
I'c
tan ø =
Iccos a
tc
1-re sin a
cin
-1-
An orthogonal cutting operation is being carried out under the following conditions: t0-D0,38 mnm, tc-0,65 mm, width
of the cut- 2.5 mm, V= 3.5 m/s, rake angle=D 6, Fc= 515 N, and Ft= 210 N. Calculate the percentage of the total energy
that is dissipated in the shear plane.
The power input in cutting= F.V
Power for shearing-F,V,
IcCOs a
tc
tan ø =
1 –r. sin a
F, = F.cos o – F, sin o
%3D
cos a
V
cos( – a)
Chapter 21 Solutions
Manufacturing Engineering & Technology
Ch. 21 - Explain why continuous chips are not necessarily...Ch. 21 - Name the factors that contribute to the formation...Ch. 21 - What is the cutting ratio? Is it always less than...Ch. 21 - Explain the difference between positive and...Ch. 21 - Explain how a dull tool can lead to negative rake...Ch. 21 - Comment on the role and importance relief angle.Ch. 21 - Explain the difference between discontinuous chips...Ch. 21 - Why should we be interested in the magnitude of...Ch. 21 - What are the differences between orthogonal and...Ch. 21 - What is a BUE? Why does it form?
Ch. 21 - Is there any advantage to having a built-up edge...Ch. 21 - What is the function of chip breakers? How do they...Ch. 21 - Identify the forces involved in a cutting...Ch. 21 - Explain the characteristics of different types of...Ch. 21 - List the factors that contribute to poor surface...Ch. 21 - Explain what is meant by the term machinability...Ch. 21 - What is shaving in machining? When would it be...Ch. 21 - List reasons that machining operations may be...Ch. 21 - Are the locations of maximum temperature and...Ch. 21 - Is material ductility important for machinability?...Ch. 21 - Explain why studying the types of chips produced...Ch. 21 - Prob. 22QLPCh. 21 - Tool life can be almost infinite at low cutting...Ch. 21 - Explain the consequences of allowing temperatures...Ch. 21 - The cutting force increases with the depth of cut...Ch. 21 - Why is it not always advisable to increase the...Ch. 21 - What are the consequences if a cutting tool chips?Ch. 21 - What are the effects of performing a cutting...Ch. 21 - Prob. 29QLPCh. 21 - Prob. 30QLPCh. 21 - Prob. 31QLPCh. 21 - Prob. 32QLPCh. 21 - Comment on your observations regarding Figs. 21.1...Ch. 21 - Prob. 34QLPCh. 21 - Comment on your observations regarding the...Ch. 21 - Why does the temperature in cutting depend on the...Ch. 21 - You will note that the values of a and b in Eq....Ch. 21 - Prob. 38QLPCh. 21 - Prob. 39QLPCh. 21 - Explain whether it is desirable to have a high or...Ch. 21 - The Taylor tool-life equation is directly...Ch. 21 - Prob. 42QLPCh. 21 - Why are tool temperatures low at low cutting...Ch. 21 - Can high-speed machining be performed without the...Ch. 21 - Prob. 45QLPCh. 21 - Prob. 46QLPCh. 21 - State whether or not the following statements are...Ch. 21 - Let n = 0.5 and C = 400 in the Taylor equation for...Ch. 21 - Assume that, in orthogonal cutting, the rake angle...Ch. 21 - Prob. 50QTPCh. 21 - Prob. 51QTPCh. 21 - Using trigonometric relationships, derive an...Ch. 21 - An orthogonal cutting operation is being carried...Ch. 21 - Prob. 54QTPCh. 21 - Prob. 55QTPCh. 21 - Prob. 56QTPCh. 21 - Show that, for the same shear angle, there are two...Ch. 21 - With appropriate diagrams, show how the use of a...Ch. 21 - In a cutting operation using a 5 rake angle, the...Ch. 21 - For a turning operation using a ceramic cutting...Ch. 21 - In Example 21.3, if the cutting speed V is...Ch. 21 - Using Eq. (21.30), select an appropriate feed for...Ch. 21 - With a carbide tool, the temperature in a cutting...Ch. 21 - The following flank wear data were collected in a...Ch. 21 - The following data are available from orthogonal...Ch. 21 - Prob. 66QTPCh. 21 - Design an experimental setup whereby orthogonal...Ch. 21 - Describe your thoughts on whether chips produced...Ch. 21 - Recall that cutting tools can be designed so that...Ch. 21 - Recall that the chip-formation mechanism also can...Ch. 21 - Prob. 73SDPCh. 21 - Describe your thoughts regarding the recycling of...Ch. 21 - List products that can be directly produced from...Ch. 21 - Obtain a wood planer and some wood specimens. Show...Ch. 21 - It has been noted that the chips from certain...Ch. 21 - As we have seen, chips carry away the majority of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- calculate the time taken to complete a 300 mm long cut on an aluminium plate using a 75 mm diameter slab mill with 6 teeth.arrow_forwardNote: Read the question carefully and give me right solutions according to the question. In orthogonal cutting of steel tube of 150 mm diameter and 2 mm thick, the cutting force was 130 kg and feed force was 35 kg for chip thickness of 0.3mm. The orthogonal cut was taken at 60 meter per minute with a feed of 0.14 mm/rev. If the back rack angle of the cutting tool was - 8 o (minus 8 degree), then calculate the shear strain and strain energy per unit volume.arrow_forward3) The following data are available from orthogonal cutting experiment, Depth of cut t, = 0.13 mm, width of cut w = 2.5 mm, rake angle a = -5°, cutting speed v = 2 m/s, Chip thickness, t= 0.23 mm, cutting force, F. = 430 N, thrust force, F = 280 N. Determine the following: Shear angle Friction Coefficient u (using F= µ N) Shear Stress t,S Shear strain y on the shear plane. Power required to perform the operation. Gross power required if the efficiency of the machine is 85%. Specific Energy, Utarrow_forward
- The outside diameter of a cylinder made of steel is to be turned. The starting diameter is 120 mm and the length is 1400 mm. The feed is 0.3 mm/rev and the depth of cut is 2.5mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.33 and C=500. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time required to complete this turning operation.arrow_forwardAn orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, rake angle, a = 10°, Cutting force, Fc =1500 N, and Thrust force, Ft = 800 N. Calculate the shear force.arrow_forwardIn a turning operation, cutting speed =200 m/min; feed = 0.25mm mm/rev, and depth of cut = 4.00mm Thermal diffusivity of the work material = 20m mm^2/s and volumetric specific heat =3.5(10^ -3 )J/mm^ 3 -C If the temperature increase above ambient temperature (20degreesC) is the angle measured by a tool-chip thermocouple to be 700degreesC, determine the specific energy for the work material in this operation.arrow_forward
- 8 - Orthogonal cutting is performed on a metal whose mass specific heat = 1.0 J/g-C, density 2.9 g/cm3, and thermal diffusivity = 0.8 cm2/s. The cutting speed is 4.5 m/s, uncut chip thickness (feed) is 0.25 mm, and width of cut (depth) is 2.2 mm. The cutting force is measured at 1170 N. Using Cook's equation, determine the cutting temperature. a) 417.09 b) O 707.60 C) 528.03 d) O 316.82 Boş bırakarrow_forward(b) An orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, chip thickness, to = 0.2 mm, width of cut = 4 mm, cutting speed, v = 3 m/s, rake angle, a = 10°, Cutting force, Fc = 500 N, and Thrust force, F1= 200 N. Calculate the percentage of the total energy that is dissipated in the shear plane of cutting process.arrow_forwardacross the surface and (b) the maximum metal removal rate during cutting A slab milling operation is performed on the top surface of a steel rectangular workpiece 12.0 in long by 2.5 in wide. The helical milling cutter, which has a 3.0 in diameter and ten teeth, is set up to overhang the width of the part on both sides. Cutting speed is 125 ft/min, feed is 0.006 in/tooth, and depth of cut = 0.300 in. Determine (a) the actual machining time to make one pass across the surface and (b) the maximum metal removal rate during the cut. (c) If an additional approach distance of 0.5 in is provided at the beginning of the pass (before cutting begins), and an overtravel distance is provided at the end of the pass equal to the cutter radius plus 0.5 in, what is the duration of the feed motion.arrow_forward
- Low carbon steel having a tensile strength = 300 MPa and a shear strength = 220 MPa is turned at a cutting speed = 2.5 m/s, feed = 0.20 mm/rev and depth of cut = 3.0 mm. The rake angle = 5° in the direction of chip flow. The resulting chip ratio = 0.45. Using the orthogonal model to approximate turning, determine the cutting force and feed force.arrow_forwardQ3:- In an orthogonal cutting operation, the tool has a rake angle = 15°. The chip thickness before the cut = 0.30 mm and the cut yields a deformed chip thickness 0.65 mm. Calculate (a) the shear plane angle and (b) the shear strain for the operation. Suppose the rake angle were changed to a= 0°. Assuming that the friction angle remains the same, determine (a) the shear plane angle, (b) the chip thickness, and (c) the shear strain for the operation.arrow_forwardA turning operation is made with a rake angle of 10 degrees, a feed of 0.010 in/rev, and a depth of cut = 0.100 in. The shear strength of the work material is known to be 50,000 lb/in2, and the chip thickness ratio after the cut = 0.40. Determine the cutting force and the thrust force. Use the orthogonal cutting model as an approximation of the turning process.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License