Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 57QTP
Show that, for the same shear angle, there are two rake angles that give the same cutting ratio.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2 1.57 Show that, for the same shear angle, there are two rake angles that give the same cutting ratio.
In orthogonal turning of a low carbon steel bar of diameter 150 mm with uncoated carbide tool. the cutting velocity is 90 m/min The feed is 0.24 mm/rev and the depth of cut is 2 mm. The chip thickness obtained is 0.48 mm If the orthogonal rake angle is zero and the principal cutting edge angle is 90°
Calculate the shear angle in degree.
The outside diameter of a cylinder made of steel is to be turned. The starting diameter is 120 mm and the length is 1400 mm. The feed is 0.3 mm/rev and the depth of cut is 2.5mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.33 and C=500. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time required to complete this turning operation.
Chapter 21 Solutions
Manufacturing Engineering & Technology
Ch. 21 - Explain why continuous chips are not necessarily...Ch. 21 - Name the factors that contribute to the formation...Ch. 21 - What is the cutting ratio? Is it always less than...Ch. 21 - Explain the difference between positive and...Ch. 21 - Explain how a dull tool can lead to negative rake...Ch. 21 - Comment on the role and importance relief angle.Ch. 21 - Explain the difference between discontinuous chips...Ch. 21 - Why should we be interested in the magnitude of...Ch. 21 - What are the differences between orthogonal and...Ch. 21 - What is a BUE? Why does it form?
Ch. 21 - Is there any advantage to having a built-up edge...Ch. 21 - What is the function of chip breakers? How do they...Ch. 21 - Identify the forces involved in a cutting...Ch. 21 - Explain the characteristics of different types of...Ch. 21 - List the factors that contribute to poor surface...Ch. 21 - Explain what is meant by the term machinability...Ch. 21 - What is shaving in machining? When would it be...Ch. 21 - List reasons that machining operations may be...Ch. 21 - Are the locations of maximum temperature and...Ch. 21 - Is material ductility important for machinability?...Ch. 21 - Explain why studying the types of chips produced...Ch. 21 - Prob. 22QLPCh. 21 - Tool life can be almost infinite at low cutting...Ch. 21 - Explain the consequences of allowing temperatures...Ch. 21 - The cutting force increases with the depth of cut...Ch. 21 - Why is it not always advisable to increase the...Ch. 21 - What are the consequences if a cutting tool chips?Ch. 21 - What are the effects of performing a cutting...Ch. 21 - Prob. 29QLPCh. 21 - Prob. 30QLPCh. 21 - Prob. 31QLPCh. 21 - Prob. 32QLPCh. 21 - Comment on your observations regarding Figs. 21.1...Ch. 21 - Prob. 34QLPCh. 21 - Comment on your observations regarding the...Ch. 21 - Why does the temperature in cutting depend on the...Ch. 21 - You will note that the values of a and b in Eq....Ch. 21 - Prob. 38QLPCh. 21 - Prob. 39QLPCh. 21 - Explain whether it is desirable to have a high or...Ch. 21 - The Taylor tool-life equation is directly...Ch. 21 - Prob. 42QLPCh. 21 - Why are tool temperatures low at low cutting...Ch. 21 - Can high-speed machining be performed without the...Ch. 21 - Prob. 45QLPCh. 21 - Prob. 46QLPCh. 21 - State whether or not the following statements are...Ch. 21 - Let n = 0.5 and C = 400 in the Taylor equation for...Ch. 21 - Assume that, in orthogonal cutting, the rake angle...Ch. 21 - Prob. 50QTPCh. 21 - Prob. 51QTPCh. 21 - Using trigonometric relationships, derive an...Ch. 21 - An orthogonal cutting operation is being carried...Ch. 21 - Prob. 54QTPCh. 21 - Prob. 55QTPCh. 21 - Prob. 56QTPCh. 21 - Show that, for the same shear angle, there are two...Ch. 21 - With appropriate diagrams, show how the use of a...Ch. 21 - In a cutting operation using a 5 rake angle, the...Ch. 21 - For a turning operation using a ceramic cutting...Ch. 21 - In Example 21.3, if the cutting speed V is...Ch. 21 - Using Eq. (21.30), select an appropriate feed for...Ch. 21 - With a carbide tool, the temperature in a cutting...Ch. 21 - The following flank wear data were collected in a...Ch. 21 - The following data are available from orthogonal...Ch. 21 - Prob. 66QTPCh. 21 - Design an experimental setup whereby orthogonal...Ch. 21 - Describe your thoughts on whether chips produced...Ch. 21 - Recall that cutting tools can be designed so that...Ch. 21 - Recall that the chip-formation mechanism also can...Ch. 21 - Prob. 73SDPCh. 21 - Describe your thoughts regarding the recycling of...Ch. 21 - List products that can be directly produced from...Ch. 21 - Obtain a wood planer and some wood specimens. Show...Ch. 21 - It has been noted that the chips from certain...Ch. 21 - As we have seen, chips carry away the majority of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, rake angle, a = 10°, Cutting force, Fc =1500 N, and Thrust force, Ft = 800 N. Calculate the shear force.arrow_forwardIn orthogonal turning of a bar 100 mm diameter with a feed of 0.25 mm/rev., depth of cut = 4 mm, cutting velocity = 90 m/min. it is observed that the main cutting force is perpendicular to friction force acting at the chip tool interface and cutting force is 1500 N. find (i) rake angle (ii) normal force.arrow_forwardAn orthogonal cutting operation is performed using a rake angle of 15°, chip thickness before the cut = 0.012 in and width of cut = 0.100 in. The chip thickness ratio is measured after the cut to be 0.55. Determine (a) the chip thickness after the cut, (b) shear angle, (c) friction angle, (d) coefficient of friction, and (e) shear strain.arrow_forward
- An orthogonal cutting operation is being carried out under the following conditions: t0 = 0.1mm, tc = 0.2 mm, width of cut = 5 mm, V = 2 m/s, rake angle = 10, Fc = 500 N, and Ft =200 N. Calculate the percentage of the total energy that is dissipated in the shear planearrow_forward3) The following data are available from orthogonal cutting experiment, Depth of cut t, = 0.13 mm, width of cut w = 2.5 mm, rake angle a = -5°, cutting speed v = 2 m/s, Chip thickness, t= 0.23 mm, cutting force, F. = 430 N, thrust force, F = 280 N. Determine the following: Shear angle Friction Coefficient u (using F= µ N) Shear Stress t,S Shear strain y on the shear plane. Power required to perform the operation. Gross power required if the efficiency of the machine is 85%. Specific Energy, Utarrow_forward(b) An orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, chip thickness, to = 0.2 mm, width of cut = 4 mm, cutting speed, v = 3 m/s, rake angle, a = 10°, Cutting force, Fc = 500 N, and Thrust force, F1= 200 N. Calculate the percentage of the total energy that is dissipated in the shear plane of cutting process.arrow_forward
- During orthogonal cutting operation of material has shear strength 95.5 Mpa. The cutting force is more than thrust force by 10%. The rake angle = 5°, the width of the cut = 5.0 mm, the chip thickness before the cut = 0.6, and the chip thickness ratio = 0.38. Determine (a) both cutting force and thrust force and (b) the coefficient of friction in the operation.arrow_forwardThe following data was obtained from an orthogonal cutting test. Rake angle = 20° Depth of cut = 6 mm Feed rate = 0.25 mm/rev Cutting speed = 0.6 m/s Chip length before cutting = 29.4 mm Vertical cutting force = 1050 N Horizontal cutting force = 630 N Chip length after cutting = 12.9 mm Using Merchant's analysis, calculate (a) Magnitude of resultant force, (b) shear plane angle, (c) friction force and friction angle, and (d) various energies consumed.arrow_forwardAn orthogonal cutting operation is being carried out under the following conditions: t0=0.38 mm, tc=0.65 mm, width of the cut= 2.5 mm, V=3.5 m/s, rake angle=6°, Fc= 515 N, and Ft=210 N. Calculate the percentage of the total energy that is dissipated in the shear plane.arrow_forward
- An orthogonal cutting operations is being carried out in which uncut thickness is 0.010 mm, cutting speed is 130 m/min, rake angle is 15° and width of cut is 6 mm. It is observed that the chip thickness is 0.015 mm, the cutting force is 60 N and the thrust force is 25 N. The ratio of friction energy to total energy is (correct to twoarrow_forwardA bar of 70 mm diameter is being cut orthogonally and is reduced to 68 mm by cutting tool in case mean length of the chip is 68.9 mm. find the cutting ratio determine shear angle also if the rake angle is 10 degree.arrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License