
Concept explainers
Interpretation:The percent yield of silver chloride is to be calculated.
Concept introduction: The reagent in reaction that controls the amount of product formed is termed as limiting reagent. After completion of

Answer to Problem 6E
The percent yield of silver chloride is 54.54 %.
Explanation of Solution
The reaction described in Exercise 5is shown below.
The mass of silver nitrate is 6.3 g. The molar mass of silver nitrate is 169.87 g/mol. The number of moles of silver nitrate is calculated as shown below.
The mass of sodium chloride (NaCl) is 4.5 g. The molar mass of sodium chloride (NaCl) is 58.44 g/mol. The number of moles of NaCl is calculated as shown below.
In the given reaction, 1.0 mol of silver nitrate reacts with 1.0 mol of sodium chloride. Therefore, 0.077 mol of sodium chloride will react with 0.077 mol of silver nitrate but the available amount is 0.0371 mol of silver nitrate. Therefore, silver nitrate is the limiting reagent.
Now, 1.0 mol of silver nitrate produces 1.0 mol of silver chloride. Therefore, 0.0371 mol of silver nitrate will produce 0.0371 mol of silver chloride.
The molar mass of silver chloride is 143.32 g/mol. The mass (theoretical yield) of silver chloride is calculated as shown below.
Therefore, the theoretical yield is 5.317 g. The actual yield is given as 2.9 g. The percent yield is calculated as shown below.
Therefore, the percent yield of silver chloride is 54.54 %.
The percent yield of silver chloride is 54.54 %.
Chapter U4 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Introductory Chemistry (6th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Biology: Life on Earth with Physiology (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- If we assume a system with an anodic overpotential, the variation of n as a function of current density: 1. at low fields is linear 2. at higher fields, it follows Tafel's law Obtain the range of current densities for which the overpotential has the same value when calculated for 1 and 2 cases (maximum relative difference of 5% compared to the behavior for higher fields). To which overpotential range does this correspond? Data: i = 1.5 mA cm², T = 300°C, B = 0.64, R = 8.314 J K1 mol-1 and F = 96485 C mol-1.arrow_forwardAnswer by equation pleasearrow_forwardSome of the theories used to describe interface structure can be distinguished by:1. the measured potential difference.2. the distribution of ions in solution.3. the calculation of charge density.4. the external Helmoltz plane.arrow_forward
- When talking about the acidity of carboxylic acids, is it the same thing to say higher or stronger acidity?arrow_forwardUsing the following two half-reactions, determine the pH range in which $NO_2^-\ (aq)$ cannot be found as the predominant chemical species in water.* $NO_3^-(aq)+10H^+(aq)+8e^-\rightarrow NH_4^+(aq)+3H_2O(l),\ pE^{\circ}=14.88$* $NO_2^-(aq)+8H^+(aq)+6e^-\rightarrow NH_4^+(aq)+2H_2O(l),\ pE^{\circ}=15.08$arrow_forwardIndicate characteristics of oxodec acid.arrow_forward
- What is the final product when hexanedioic acid reacts with 1º PCl5 and 2º NH3.arrow_forwardWhat is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





