(a)
Interpretation:
The “start” (first three repeating units) of the structural formula for the
Concept Introduction:
Polymer is a very large molecule that is formed by repetitive bonding together of many smaller molecules. The small repeating units are known as monomer.
Addition polymer is the one in which the monomers simply add together with no other products formed apart from the polymer. The repeating unit in addition polymer often exceeds 100,000 and sometimes can exceed even a million.
If the monomer contain only one double bond, then it will take part in polymerization that results in polymer without a double bond.
(b)
Interpretation:
The “start” (first three repeating units) of the structural formula for the addition polymer that is made from vinyl chloride has to be drawn.
Concept Introduction:
Polymer is a very large molecule that is formed by repetitive bonding together of many smaller molecules. The small repeating units are known as monomer. Polymerization is the process by which polymer is prepared.
Addition polymer is the one in which the monomers simply add together with no other products formed apart from the polymer. The repeating unit in addition polymer often exceeds 100,000 and sometimes can exceed even a million.
If the monomer contain only one double bond, then it will take part in polymerization that results in polymer without a double bond.
(c)
Interpretation:
The “start” (first three repeating units) of the structural formula for the addition polymer that is made from 1,2-dichloroethene has to be drawn.
Concept Introduction:
Polymer is a very large molecule that is formed by repetitive bonding together of many smaller molecules. The small repeating units are known as monomer. Polymerization is the process by which polymer is prepared.
Addition polymer is the one in which the monomers simply add together with no other products formed apart from the polymer. The repeating unit in addition polymer often exceeds 100,000 and sometimes can exceed even a million.
If the monomer contain only one double bond, then it will take part in polymerization that results in polymer without a double bond.
(d)
Interpretation:
The “start” (first three repeating units) of the structural formula for the addition polymer that is made from 1-chloroethene has to be drawn.
Concept Introduction:
Polymer is a very large molecule that is formed by repetitive bonding together of many smaller molecules. The small repeating units are known as monomer. Polymerization is the process by which polymer is prepared.
Addition polymer is the one in which the monomers simply add together with no other products formed apart from the polymer. The repeating unit in addition polymer often exceeds 100,000 and sometimes can exceed even a million.
If the monomer contain only one double bond, then it will take part in polymerization that results in polymer without a double bond.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Organic And Biological Chemistry
- Explain the meaning of: the electron partition function is equal to the degeneracy of the ground state.arrow_forward28. For each of the following species, add charges wherever required to give a complete, correct Lewis structure. All bonds and nonbonded valence electrons are shown. a. b. H H H H H :0-C-H H H H-C-H C. H H d. H-N-0: e. H H-O H-O H B=0 f. H—Ö—Ñ—Ö—H Norton Private Barrow_forwardAt 0oC and 1 atm, the viscosity of hydrogen (gas) is 8.55x10-5 P. Calculate the viscosity of a gas, if possible, consisting of deuterium. Assume that the molecular sizes are equal.arrow_forward
- Indicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardIndicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardDraw the skeletal structure of the alkane 4-ethyl-2, 2, 5, 5- tetramethylnonane. How many primary, secondary, tertiary, and quantenary carbons does it have?arrow_forward
- Electronic contribution to the heat capacity at constant volume A) is always zero B) is zero, except for excited levels whose energy is comparable to KT C) equals 3/2 Nk D) equals Nk exp(BE)arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardCalculate the packing factor of CaTiO3. It has a perovskite structure. Data: ionic radii Co²+ = 0.106 nm, Ti4+ = 0.064 nm, O² = 0.132 nm; lattice constant is a = 2(rTi4+ + ro2-). Ca2+ 02- T14+ Consider the ions as rigid spheres. 1. 0.581 or 58.1% 2. -0.581 or -58.1 % 3. 0.254 or 25.4%arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning