Organic And Biological Chemistry
Organic And Biological Chemistry
7th Edition
ISBN: 9781305081079
Author: STOKER, H. Stephen (howard Stephen)
Publisher: Cengage Learning,
Question
Book Icon
Chapter 2, Problem 2.49EP

(a)

Interpretation Introduction

Interpretation:

The IUPAC name for the given molecule has to be assigned including the prefix cis- or trans-.

Concept Introduction:

IUPAC nomenclature for alkene:  There are about eight rules to be followed in giving IUPAC name for alkene.

  • The suffix –ane has to be replaced with the suffix –ene.  This is used to indicate the presence of double bond.
  • The longest continuous chain of carbon atoms has to be chosen that contains both carbon atoms of the double bond.
  • The parent carbon chain has to be numbered in a way so that the numbering begins at the end near to the double bond.  In case if the double bond is equidistant from both ends, then numbering has to be done from the end that is closer to substituents.
  • The position of the double bond has to be given a single number which is lower‑numbered carbon atom that is present in the double bond.
  • Suffixes like –diene, -triene, -tetrene, and so on are used when the compound contains more than one double bond.
  • In case of cycloalkenes which do not have any substitution, the numbering is not needed to locate the double bond because the bond is assumed to be between the carbons 1 and 2.
  • In case if substituents are present in cycloalkene, then the double‑bonded carbon atoms are numbered 1 and 2 in a direction where the substituent gets the lower number.
  • If the cycloalkenes contain more than one double bond, then one double bond is assigned the numbers 1 and 2 followed by the other double bond so that the lowest number possible is given.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.  To indicate a double bond between carbon atom, double line is used.

If stereoisomers are possible for the alkene, the stereoinformation is shown in the IUPAC name by adding prefix cis- or trans- with respect to the groups present on the same side of double bond or opposite side of double bond.

(a)

Expert Solution
Check Mark

Answer to Problem 2.49EP

The IUPAC name for the given compound is cis-2-pentene.

Explanation of Solution

Given compound is,

Organic And Biological Chemistry, Chapter 2, Problem 2.49EP , additional homework tip  1

The longest continuous carbon chain present in the given compound is five carbon atoms.  Hence, the parent alkane is pentane.

As the given compound contains a double bond, the suffix –ane is replaced by –ene.  Therefore, the name obtained is pentene.

Numbering has to be given in a way that the carbon atoms present in the double bond gets the least numbering.  Therefore, the name of the given compound is 2-pentene.

Organic And Biological Chemistry, Chapter 2, Problem 2.49EP , additional homework tip  2

In order to include the stereo information, the groups attached to the double‑bonded carbon atoms are looked into.

Organic And Biological Chemistry, Chapter 2, Problem 2.49EP , additional homework tip  3

The bulky groups are present on same side of the double bond.  Hence, the configuration of the given molecule is cis-.  Therefore, the IUPAC name can be given as cis-2-pentene.

Conclusion

IUPAC name for the given molecule is assigned.

(b)

Interpretation Introduction

Interpretation:

The IUPAC name for the given molecule has to be assigned including the prefix cis- or trans-.

Concept Introduction:

IUPAC nomenclature for alkene:  There are about eight rules to be followed in giving IUPAC name for alkene.

  • The suffix –ane has to be replaced with the suffix –ene.  This is used to indicate the presence of double bond.
  • The longest continuous chain of carbon atoms has to be chosen that contains both carbon atoms of the double bond.
  • The parent carbon chain has to be numbered in a way so that the numbering begins at the end near to the double bond.  In case if the double bond is equidistant from both ends, then numbering has to be done from the end that is closer to substituents.
  • The position of the double bond has to be given a single number which is lower‑numbered carbon atom that is present in the double bond.
  • Suffixes like –diene, -triene, -tetrene, and so on are used when the compound contains more than one double bond.
  • In case of cycloalkenes which do not have any substitution, the numbering is not needed to locate the double bond because the bond is assumed to be between the carbons 1 and 2.
  • In case if substituents are present in cycloalkene, then the double‑bonded carbon atoms are numbered 1 and 2 in a direction where the substituent gets the lower number.
  • If the cycloalkenes contain more than one double bond, then one double bond is assigned the numbers 1 and 2 followed by the other double bond so that the lowest number possible is given.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.  To indicate a double bond between carbon atom, double line is used.

If stereoisomers are possible for the alkene, the stereoinformation is shown in the IUPAC name by adding prefix cis- or trans- with respect to the groups present on the same side of double bond or opposite side of double bond.

(b)

Expert Solution
Check Mark

Answer to Problem 2.49EP

The IUPAC name for the given compound is trans-1-bromo-2-iodoethene.

Explanation of Solution

Given compound is,

Organic And Biological Chemistry, Chapter 2, Problem 2.49EP , additional homework tip  4

The longest continuous carbon chain present in the given compound is two carbon atoms.  Hence, the parent alkane is ethane.

As the given compound contains a double bond, the suffix –ane is replaced by –ene.  Therefore, the name obtained is ethene.

Numbering has to be given in a way that the carbon atoms present in the double bond gets the least numbering.  This is followed by the substituents present in the given molecule.  It is found that an iodine atom is present on the second carbon atom and bromine atom is present on the first carbon atom.  Therefore, the name of the given compound is 2-pentene.

Organic And Biological Chemistry, Chapter 2, Problem 2.49EP , additional homework tip  5

In order to include the stereo information, the groups attached to the double‑bonded carbon atoms are looked into.

Organic And Biological Chemistry, Chapter 2, Problem 2.49EP , additional homework tip  6

The bulky groups are present on opposite side of the double bond.  Hence, the configuration of the given molecule is trans-.  Therefore, the IUPAC name can be given as trans-1-bromo-2-iodoethene.

Conclusion

IUPAC name for the given molecule is assigned.

(c)

Interpretation Introduction

Interpretation:

The IUPAC name for the given molecule has to be assigned including the prefix cis- or trans-.

Concept Introduction:

IUPAC nomenclature for alkene:  There are about eight rules to be followed in giving IUPAC name for alkene.

  • The suffix –ane has to be replaced with the suffix –ene.  This is used to indicate the presence of double bond.
  • The longest continuous chain of carbon atoms has to be chosen that contains both carbon atoms of the double bond.
  • The parent carbon chain has to be numbered in a way so that the numbering begins at the end near to the double bond.  In case if the double bond is equidistant from both ends, then numbering has to be done from the end that is closer to substituents.
  • The position of the double bond has to be given a single number which is lower‑numbered carbon atom that is present in the double bond.
  • Suffixes like –diene, -triene, -tetrene, and so on are used when the compound contains more than one double bond.
  • In case of cycloalkenes which do not have any substitution, the numbering is not needed to locate the double bond because the bond is assumed to be between the carbons 1 and 2.
  • In case if substituents are present in cycloalkene, then the double‑bonded carbon atoms are numbered 1 and 2 in a direction where the substituent gets the lower number.
  • If the cycloalkenes contain more than one double bond, then one double bond is assigned the numbers 1 and 2 followed by the other double bond so that the lowest number possible is given.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.  To indicate a double bond between carbon atom, double line is used.

If stereoisomers are possible for the alkene, the stereoinformation is shown in the IUPAC name by adding prefix cis- or trans- with respect to the groups present on the same side of double bond or opposite side of double bond.

(c)

Expert Solution
Check Mark

Answer to Problem 2.49EP

The IUPAC name for the given compound is tetrafluoroethene.

Explanation of Solution

Given compound is,

Organic And Biological Chemistry, Chapter 2, Problem 2.49EP , additional homework tip  7

The longest continuous carbon chain present in the given compound is two carbon atoms.  Hence, the parent alkane is ethane.

As the given compound contains a double bond, the suffix –ane is replaced by –ene.  Therefore, the name obtained is ethene.

In this case, numbering does not make any difference.  This is because all the hydrogen atoms are replaced by fluorine atoms.  Hence, the IUPAC name can be given as tetrafluoroethene.

Stereoisomers are not possible for the given molecule because same groups are present on the carbon atom that is present on the double bond.

Conclusion

IUPAC name for the given molecule is assigned.

(d)

Interpretation Introduction

Interpretation:

The IUPAC name for the given molecule has to be assigned including the prefix cis- or trans-.

Concept Introduction:

IUPAC nomenclature for alkene:  There are about eight rules to be followed in giving IUPAC name for alkene.

  • The suffix –ane has to be replaced with the suffix –ene.  This is used to indicate the presence of double bond.
  • The longest continuous chain of carbon atoms has to be chosen that contains both carbon atoms of the double bond.
  • The parent carbon chain has to be numbered in a way so that the numbering begins at the end near to the double bond.  In case if the double bond is equidistant from both ends, then numbering has to be done from the end that is closer to substituents.
  • The position of the double bond has to be given a single number which is lower‑numbered carbon atom that is present in the double bond.
  • Suffixes like –diene, -triene, -tetrene, and so on are used when the compound contains more than one double bond.
  • In case of cycloalkenes which do not have any substitution, the numbering is not needed to locate the double bond because the bond is assumed to be between the carbons 1 and 2.
  • In case if substituents are present in cycloalkene, then the double‑bonded carbon atoms are numbered 1 and 2 in a direction where the substituent gets the lower number.
  • If the cycloalkenes contain more than one double bond, then one double bond is assigned the numbers 1 and 2 followed by the other double bond so that the lowest number possible is given.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.  To indicate a double bond between carbon atom, double line is used.

If stereoisomers are possible for the alkene, the stereoinformation is shown in the IUPAC name by adding prefix cis- or trans- with respect to the groups present on the same side of double bond or opposite side of double bond.

(d)

Expert Solution
Check Mark

Answer to Problem 2.49EP

The IUPAC name for the given compound is 2-methyl-2-butene.

Explanation of Solution

Given compound is,

Organic And Biological Chemistry, Chapter 2, Problem 2.49EP , additional homework tip  8

The longest continuous carbon chain present in the given compound is four carbon atoms.  Hence, the parent alkane is butane.

As the given compound contains a double bond, the suffix –ane is replaced by –ene.  Therefore, the name obtained is butene.

Numbering has to be given in a way that the carbon atoms present in the double bond gets the least numbering.  Therefore, the name of the given compound is 2-butene.  The substituent present on the longest carbon chain is a methyl group that is present on the second carbon atom.  Therefore, the name of the given molecule can be given as,

Organic And Biological Chemistry, Chapter 2, Problem 2.49EP , additional homework tip  9

In order to include the stereo information, the groups attached to the double‑bonded carbon atoms are looked into.

Organic And Biological Chemistry, Chapter 2, Problem 2.49EP , additional homework tip  10

The bulky groups are present on same carbon atom of the double bond.  Hence, isomerism is not possible.  Therefore, the IUPAC name of the given molecule is 2-methyl-2-butene.

Conclusion

IUPAC name for the given molecule is assigned.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The number of microstates corresponding to each macrostate is given by N. The dominant macrostate or configuration of a system is the macrostate with the greatest weight W. Are both statements correct?
For the single step reaction: A + B → 2C + 25 kJ If the activation energy for this reaction is 35.8 kJ, sketch an energy vs. reaction coordinate diagram for this reaction. Be sure to label the following on your diagram: each of the axes, reactant compounds and product compounds, enthalpy of reaction, activation energy of the forward reaction with the correct value, activation energy of the backwards reaction with the correct value and the transition state. In the same sketch you drew, after the addition of a homogeneous catalyst, show how it would change the graph. Label any new line "catalyst" and label any new activation energy.
How many grams of C are combined with 3.75 ✕ 1023 atoms of H in the compound C5H12?

Chapter 2 Solutions

Organic And Biological Chemistry

Ch. 2.3 - Prob. 4QQCh. 2.4 - Prob. 1QQCh. 2.4 - Prob. 2QQCh. 2.5 - Prob. 1QQCh. 2.5 - Prob. 2QQCh. 2.5 - Prob. 3QQCh. 2.6 - Prob. 1QQCh. 2.6 - Prob. 2QQCh. 2.6 - Prob. 3QQCh. 2.7 - Prob. 1QQCh. 2.7 - Prob. 2QQCh. 2.7 - Prob. 3QQCh. 2.8 - Prob. 1QQCh. 2.8 - Prob. 2QQCh. 2.9 - Prob. 1QQCh. 2.9 - Prob. 2QQCh. 2.10 - Prob. 1QQCh. 2.10 - Prob. 2QQCh. 2.10 - Prob. 3QQCh. 2.10 - Prob. 4QQCh. 2.10 - Prob. 5QQCh. 2.11 - Prob. 1QQCh. 2.11 - Prob. 2QQCh. 2.11 - Prob. 3QQCh. 2.11 - Prob. 4QQCh. 2.11 - Prob. 5QQCh. 2.12 - Prob. 1QQCh. 2.12 - Prob. 2QQCh. 2.12 - Prob. 3QQCh. 2.12 - Prob. 4QQCh. 2.12 - Prob. 5QQCh. 2.13 - Prob. 1QQCh. 2.13 - Prob. 2QQCh. 2.13 - Prob. 3QQCh. 2.14 - Prob. 1QQCh. 2.14 - Prob. 2QQCh. 2.14 - Prob. 3QQCh. 2.14 - Prob. 4QQCh. 2.15 - Prob. 1QQCh. 2.15 - Prob. 2QQCh. 2.15 - Prob. 3QQCh. 2.15 - Prob. 4QQCh. 2.16 - Prob. 1QQCh. 2.16 - Prob. 2QQCh. 2 - Classify each of the following hydrocarbons as...Ch. 2 - Prob. 2.2EPCh. 2 - Prob. 2.3EPCh. 2 - Prob. 2.4EPCh. 2 - Prob. 2.5EPCh. 2 - Prob. 2.6EPCh. 2 - Prob. 2.7EPCh. 2 - Characterize the physical properties of saturated...Ch. 2 - Prob. 2.9EPCh. 2 - Prob. 2.10EPCh. 2 - Prob. 2.11EPCh. 2 - Prob. 2.12EPCh. 2 - Prob. 2.13EPCh. 2 - Prob. 2.14EPCh. 2 - What is the name of the spatial arrangement for...Ch. 2 - Prob. 2.16EPCh. 2 - Prob. 2.17EPCh. 2 - Prob. 2.18EPCh. 2 - Draw a condensed structural formula for each of...Ch. 2 - Prob. 2.20EPCh. 2 - The following names are incorrect by IUPAC rules....Ch. 2 - The following names are incorrect by IUPAC rules....Ch. 2 - Prob. 2.23EPCh. 2 - Draw a condensed structural formula for each of...Ch. 2 - Prob. 2.25EPCh. 2 - Classify each of the following compounds as...Ch. 2 - Prob. 2.27EPCh. 2 - How many hydrogen atoms are present in a molecule...Ch. 2 - Draw a line-angle structural formula for each of...Ch. 2 - Draw a line-angle structural formula for each of...Ch. 2 - Prob. 2.31EPCh. 2 - Prob. 2.32EPCh. 2 - Prob. 2.33EPCh. 2 - Prob. 2.34EPCh. 2 - Prob. 2.35EPCh. 2 - Prob. 2.36EPCh. 2 - Prob. 2.37EPCh. 2 - Prob. 2.38EPCh. 2 - For each of the following pairs of alkenes,...Ch. 2 - For each of the following pairs of alkenes,...Ch. 2 - Prob. 2.41EPCh. 2 - Prob. 2.42EPCh. 2 - Prob. 2.43EPCh. 2 - Prob. 2.44EPCh. 2 - Prob. 2.45EPCh. 2 - Prob. 2.46EPCh. 2 - For each molecule, indicate whether cistrans...Ch. 2 - Prob. 2.48EPCh. 2 - Prob. 2.49EPCh. 2 - Prob. 2.50EPCh. 2 - Draw a structural formula for each of the...Ch. 2 - Prob. 2.52EPCh. 2 - Prob. 2.53EPCh. 2 - For each of the following molecules, indicate...Ch. 2 - Prob. 2.55EPCh. 2 - Prob. 2.56EPCh. 2 - Prob. 2.57EPCh. 2 - Prob. 2.58EPCh. 2 - Prob. 2.59EPCh. 2 - How many isoprene units are present in a....Ch. 2 - Prob. 2.61EPCh. 2 - Indicate whether each of the following statements...Ch. 2 - Prob. 2.63EPCh. 2 - Prob. 2.64EPCh. 2 - Prob. 2.65EPCh. 2 - Prob. 2.66EPCh. 2 - Prob. 2.67EPCh. 2 - Prob. 2.68EPCh. 2 - Prob. 2.69EPCh. 2 - Prob. 2.70EPCh. 2 - Prob. 2.71EPCh. 2 - Prob. 2.72EPCh. 2 - Prob. 2.73EPCh. 2 - Prob. 2.74EPCh. 2 - Prob. 2.75EPCh. 2 - Prob. 2.76EPCh. 2 - Supply the structural formula of the product in...Ch. 2 - Prob. 2.78EPCh. 2 - Prob. 2.79EPCh. 2 - What reactant would you use to prepare each of the...Ch. 2 - Prob. 2.81EPCh. 2 - Prob. 2.82EPCh. 2 - Prob. 2.83EPCh. 2 - Prob. 2.84EPCh. 2 - Prob. 2.85EPCh. 2 - Prob. 2.86EPCh. 2 - Prob. 2.87EPCh. 2 - Prob. 2.88EPCh. 2 - Prob. 2.89EPCh. 2 - Prob. 2.90EPCh. 2 - Prob. 2.91EPCh. 2 - Prob. 2.92EPCh. 2 - Prob. 2.93EPCh. 2 - Prob. 2.94EPCh. 2 - Prob. 2.95EPCh. 2 - Prob. 2.96EPCh. 2 - Prob. 2.97EPCh. 2 - Prob. 2.98EPCh. 2 - Prob. 2.99EPCh. 2 - Prob. 2.100EPCh. 2 - Prob. 2.101EPCh. 2 - Prob. 2.102EPCh. 2 - Prob. 2.103EPCh. 2 - Prob. 2.104EPCh. 2 - Prob. 2.105EPCh. 2 - Prob. 2.106EPCh. 2 - Prob. 2.107EPCh. 2 - Prob. 2.108EPCh. 2 - Assign each of the compounds in Problem 13-107 an...Ch. 2 - Assign each of the compounds in Problem 13-108 an...Ch. 2 - Prob. 2.111EPCh. 2 - Prob. 2.112EPCh. 2 - Prob. 2.113EPCh. 2 - Prob. 2.114EPCh. 2 - Prob. 2.115EPCh. 2 - Prob. 2.116EPCh. 2 - Prob. 2.117EPCh. 2 - Prob. 2.118EPCh. 2 - Prob. 2.119EPCh. 2 - Prob. 2.120EPCh. 2 - Prob. 2.121EPCh. 2 - Prob. 2.122EPCh. 2 - Prob. 2.123EPCh. 2 - Prob. 2.124EPCh. 2 - Prob. 2.125EPCh. 2 - Prob. 2.126EPCh. 2 - Prob. 2.127EPCh. 2 - Prob. 2.128EPCh. 2 - Prob. 2.129EPCh. 2 - Prob. 2.130EP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co