(a)
Interpretation:
The structural formula for the monomer unit from which the given
Concept Introduction:
Polymer is a very large molecule that is formed by repetitive bonding together of many smaller molecules. The small repeating units are known as monomer.
(b)
Interpretation:
The structural formula for the monomer unit from which the given polymer is formed has to be drawn.
Concept Introduction:
Polymer is a very large molecule that is formed by repetitive bonding together of many smaller molecules. The small repeating units are known as monomer. Polymerization is the process by which polymer is prepared.
Addition polymer is the one in which the monomers simply add together with no other products formed apart from the polymer. The repeating unit in addition polymer often exceeds 100,000 and sometimes can exceed even a million.
(c)
Interpretation:
The structural formula for the monomer unit from which the given polymer is formed has to be drawn.
Concept Introduction:
Polymer is a very large molecule that is formed by repetitive bonding together of many smaller molecules. The small repeating units are known as monomer. Polymerization is the process by which polymer is prepared.
Addition polymer is the one in which the monomers simply add together with no other products formed apart from the polymer. The repeating unit in addition polymer often exceeds 100,000 and sometimes can exceed even a million.
(d)
Interpretation:
The structural formula for the monomer unit from which the given polymer is formed has to be drawn.
Concept Introduction:
Polymer is a very large molecule that is formed by repetitive bonding together of many smaller molecules. The small repeating units are known as monomer. Polymerization is the process by which polymer is prepared.
Addition polymer is the one in which the monomers simply add together with no other products formed apart from the polymer. The repeating unit in addition polymer often exceeds 100,000 and sometimes can exceed even a million.
Trending nowThis is a popular solution!
Chapter 2 Solutions
Organic And Biological Chemistry
- The velocity distribution function of gas moleculesa) is used to measure their velocity, since the small size of gas molecules means that it cannot be measured in any other wayb) is only used to describe the velocity of particles if their density is very high.c) describes the probability that a gas particle has a velocity in a given interval of velocitiesarrow_forwardExplain why in the representation of a one-dimensional velocity distribution function for a particular gas, the maximum occurs for vi = 0 m/s.arrow_forwardExplain why the representation of a one-dimensional velocity distribution function for a particular gas becomes flatter as the temperature increases.arrow_forward
- Draw a Lewis structure for each of the following molecules and assign charges where appropriate. The order in which the atoms are connected is given in parentheses. a. CIFCIF b. BrCNBrCN 0 c. SOCI2 × (CISCIO) SOC₁₂ (CISCI) You can draw both an octet and a valence shell expanded structure. Considering the following structural information, which is the better one: The measured S-OS-O bond length in SOC12SOCl2 is 1.43 Å. For comparison, that in SO2SO2 is 1.43 Å [Exercise 1-9, part (b)], that in CHзSOHCH3 SOH d. CH3NH2CH3NH2 (methanesulfenic acid) is 1.66 A. e. CH3OCH3 CH3 OCH3 NH2 f. N2H2× (HNNH) N2 H2 (HNNH) g. CH2COCH₂ CO h. HN3× (HNNN) HN3 (HNNN) i. N20 × (NNO) N2O (NNO)arrow_forwardbre The reaction sequence shown in Scheme 5 demonstrates the synthesis of a substituted benzene derivative Q. wolsd works 2 NH2 NaNO2, HCI (apexe) 13× (1 HNO3, H2SO4 C6H5CIN2 0°C HOTE CHINO₂ N O *O₂H ( PO Q Я Scheme 5 2 bag abouoqmics to sounde odi WEIC (i) Draw the structure of intermediate O. [2 marks] to noitsmot od: tot meinedogm, noit so oft listsb ni zaupaib bas wa (ii) Draw the mechanism for the transformation of aniline N to intermediate O. Spoilage (b) [6 marks] (iii) Identify the reagent X used to convert compound O to the iodinated compound [tom E P. vueimado oilovonsa ni moitos nolisbnolov ayd toes ai tedw nisiqx (iv) Identify the possible structures of compound Q. [2 marks] [2 marks] [shom 2] (v) bus noires goiribbeolovo xnivollot adj to subora sidab Draw the mechanism for the transformation of intermediate P to compound Q. [5 marks] vi (vi) Account for the regiochemical outcome observed in the reaction forming compound Q. [3 marks]arrow_forwardPROBLEM 4 Solved Show how 1-butanol can be converted into the following compounds: a. PROBLEM 5+ b. d. -C= Narrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning