
Concept explainers
(a)
Interpretation:
The physical state of propene at room temperature and pressure has to be indicated with the help of Figure 13-7.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkenes and cycloalkenes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkenes and cycloalkenes do not get solubilized in water. In other words, alkenes and cycloalkenes are insoluble in water.
Regarding density, alkenes and cycloalkenes have density lower than water. When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility. Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.
Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size. The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature. The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.
When branching happens in the carbon chain, it lowers the boiling point of alkenes. In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.
Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.
(b)
Interpretation:
The physical state of 1-hexene at room temperature and pressure has to be indicated with the help of Figure 13-7.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons. They both occur naturally.
Alkenes and cycloalkenes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkenes and cycloalkenes do not get solubilized in water. In other words, alkenes and cycloalkenes are insoluble in water.
Regarding density, alkenes and cycloalkenes have density lower than water. When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility. Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.
Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size. The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature. The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.
When branching happens in the carbon chain, it lowers the boiling point of alkenes. In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.
Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.
(c)
Interpretation:
The physical state of cyclopentene at room temperature and pressure has to be indicated with the help of Figure 13-7.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons. They both occur naturally.
Alkenes and cycloalkenes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkenes and cycloalkenes do not get solubilized in water. In other words, alkenes and cycloalkenes are insoluble in water.
Regarding density, alkenes and cycloalkenes have density lower than water. When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility. Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.
Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size. The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature. The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.
When branching happens in the carbon chain, it lowers the boiling point of alkenes. In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.
Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.
(d)
Interpretation:
The physical state of cycloheptene at room temperature and pressure has to be indicated with the help of Figure 13-7.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons. They both occur naturally.
Alkenes and cycloalkenes are hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, alkenes and cycloalkenes do not get solubilized in water. In other words, alkenes and cycloalkenes are insoluble in water.
Regarding density, alkenes and cycloalkenes have density lower than water. When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility. Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.
Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size. The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature. The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.
When branching happens in the carbon chain, it lowers the boiling point of alkenes. In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.
Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
Organic And Biological Chemistry
- What are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forwardA common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forwardWhat is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forward
- Predict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forwardGiven a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forward
- Four liters of an aqueous solution containing 6.98 mg of acetic acid were prepared. At 25°C, the measured conductivity was 5.89x10-3 mS cm-1. Calculate the degree of dissociation of the acid and its ionization constant.Molecular weights: O (15.999), C (12.011), H (1.008).Limiting molar ionic conductivities (λ+0 and λ-0) of Ac-(aq) and H+(aq): 40.9 and 349.8 S cm-2 mol-1.arrow_forwardDetermine the change in Gibbs energy, entropy, and enthalpy at 25°C for the battery from which the data in the table were obtained.T (°C) 15 20 25 30 35Eo (mV) 227.13 224.38 221.87 219.37 216.59Data: n = 1, F = 96485 C mol–1arrow_forwardIndicate the correct options.1. The units of the transport number are Siemens per mole.2. The Siemens and the ohm are not equivalent.3. The Van't Hoff factor is dimensionless.4. Molar conductivity does not depend on the electrolyte concentration.arrow_forward
- Ideally nonpolarizable electrodes can1. participate as reducers in reactions.2. be formed only with hydrogen.3. participate as oxidizers in reactions.4. form open and closed electrochemical systems.arrow_forwardIndicate the options for an electrified interface:1. Temperature has no influence on it.2. Not all theories that describe it include a well-defined electrical double layer.3. Under favorable conditions, its differential capacitance can be determined with the help of experimental measurements.4. A component with high electronic conductivity is involved in its formation.arrow_forwardTo describe the structure of the interface, there are theories or models that can be distinguished by:1. calculation of the charge density.2. distribution of ions in the solution.3. experimentally measured potential difference.4. external Helmoltz plane.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning




