a.
To determine: the probability that exactly 17 athletes should have graduated.
The probability that exactly 17 athletes should have graduated is
Given information:
A university widely known for its track and field program claims that 75% of its track athletes get degrees. A journalist investigates what happened to the 32 athletes who began the program over a 6-year period that ended 7 years ago. Of these athletes, 17 have graduated and the remaining 15 are no longer attending any college. If the university’s claim is true, the number of athletes who graduate among the 32 examined should have been governed by binomial probability with
Concept Used:
Binomial probability Distribution:
Consider a simple event with these properties:
Each trial has two possible outcomes, called success and failure.
The probability of success on each trial is the same. (We denote the probability of success as
The trials are independent.
If the binomial random variable
Calculation:
From the situation, the following information could be identified.
Here,
The probability of failure
b.
To determine: the probability that 17 or fewer athletes should have graduated.
The probability that 17 or fewer athletes should have graduated is
Given information:
A university widely known for its track and field program claims that 75% of its track athletes get degrees. A journalist investigates what happened to the 32 athletes who began the program over a 6-year period that ended 7 years ago. Of these athletes, 17 have graduated and the remaining 15 are no longer attending any college. If the university’s claim is true, the number of athletes who graduate among the 32 examined should have been governed by binomial probability with
Concept Used:
Binomial probability Distribution:
Consider a simple event with these properties:
Each trial has two possible outcomes, called success and failure.
The probability of success on each trial is the same. (We denote the probability of success as
The trials are independent.
If the binomial random variable
Calculation:
The probability that exactly 17 athletes should have graduated is
Here,
The probability of failure
c.
To explain: the story on the investigation if you were journalist.
Given information:
A university widely known for its track and field program claims that 75% of its track athletes get degrees. A journalist investigates what happened to the 32 athletes who began the program over a 6-year period that ended 7 years ago. Of these athletes, 17 have graduated and the remaining 15 are no longer attending any college. If the university’s claim is true, the number of athletes who graduate among the 32 examined should have been governed by binomial probability with
Concept Used:
Binomial probability Distribution:
Consider a simple event with these properties:
Each trial has two possible outcomes, called success and failure.
The probability of success on each trial is the same. (We denote the probability of success as
The trials are independent.
If the binomial random variable
Calculation:
The probability that exactly 17 athletes should have graduated is
The probability that 17 or fewer athletes should have graduated is
Since the probability is very small, it is very unusual that 17 or fewer athletes graduated and thus we would say that the universities claim is incorrect.
Chapter 10 Solutions
PRECALCULUS:GRAPHICAL,...-NASTA ED.
- nd ave a ction and ave an 48. The domain of f y=f'(x) x 1 2 (= x<0 x<0 = f(x) possible. Group Activity In Exercises 49 and 50, do the following. (a) Find the absolute extrema of f and where they occur. (b) Find any points of inflection. (c) Sketch a possible graph of f. 49. f is continuous on [0,3] and satisfies the following. X 0 1 2 3 f 0 2 0 -2 f' 3 0 does not exist -3 f" 0 -1 does not exist 0 ve tes where X 0 < x <1 1< x <2 2arrow_forwardNumerically estimate the value of limx→2+x3−83x−9, rounded correctly to one decimal place. In the provided table below, you must enter your answers rounded exactly to the correct number of decimals, based on the Numerical Conventions for MATH1044 (see lecture notes 1.3 Actions page 3). If there are more rows provided in the table than you need, enter NA for those output values in the table that should not be used. x→2+ x3−83x−9 2.1 2.01 2.001 2.0001 2.00001 2.000001arrow_forwardFind the general solution of the given differential equation. (1+x)dy/dx - xy = x +x2arrow_forwardEstimate the instantaneous rate of change of the function f(x) = 2x² - 3x − 4 at x = -2 using the average rate of change over successively smaller intervals.arrow_forwardGiven the graph of f(x) below. Determine the average rate of change of f(x) from x = 1 to x = 6. Give your answer as a simplified fraction if necessary. For example, if you found that msec = 1, you would enter 1. 3' −2] 3 -5 -6 2 3 4 5 6 7 Ꮖarrow_forwardGiven the graph of f(x) below. Determine the average rate of change of f(x) from x = -2 to x = 2. Give your answer as a simplified fraction if necessary. For example, if you found that msec = , you would enter 3 2 2 3 X 23arrow_forwardA function is defined on the interval (-π/2,π/2) by this multipart rule: if -π/2 < x < 0 f(x) = a if x=0 31-tan x +31-cot x if 0 < x < π/2 Here, a and b are constants. Find a and b so that the function f(x) is continuous at x=0. a= b= 3arrow_forwardUse the definition of continuity and the properties of limits to show that the function is continuous at the given number a. f(x) = (x + 4x4) 5, a = -1 lim f(x) X--1 = lim x+4x X--1 lim X-1 4 x+4x 5 ))" 5 )) by the power law by the sum law lim (x) + lim X--1 4 4x X-1 -(0,00+( Find f(-1). f(-1)=243 lim (x) + -1 +4 35 4 ([ ) lim (x4) 5 x-1 Thus, by the definition of continuity, f is continuous at a = -1. by the multiple constant law by the direct substitution propertyarrow_forward1. Compute Lo F⚫dr, where and C is defined by F(x, y) = (x² + y)i + (y − x)j r(t) = (12t)i + (1 − 4t + 4t²)j from the point (1, 1) to the origin.arrow_forward2. Consider the vector force: F(x, y, z) = 2xye²i + (x²e² + y)j + (x²ye² — z)k. (A) [80%] Show that F satisfies the conditions for a conservative vector field, and find a potential function (x, y, z) for F. Remark: To find o, you must use the method explained in the lecture. (B) [20%] Use the Fundamental Theorem for Line Integrals to compute the work done by F on an object moves along any path from (0,1,2) to (2, 1, -8).arrow_forwardhelp pleasearrow_forwardIn each of Problems 1 through 4, draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at t = 0, describe the dependency.1. y′ = 3 − 2yarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning