To calculate: The mean and median scores of 30 students on the exam conducted by Professor Mitchell after correction.
The mean and median scores of 30 students on the exam conducted by Professor Mitchell after correction are 81.6 and 80.5 respectively.
Given:
The mean score obtained by 30 students in the exam is 81.3.
The median score obtained by 30 students in the exam is 80.5.
The top student deserves 9 extra points for a misgraded proof.
Concept used:
The mean and median are measures of central tendency, the mean is nothing but the average of all values and the median is the middle value of the data distribution in ascending order.
The mean is calculated using the formula
Calculation:
The top student deserves 9 extra points, with respect to mean value given the total sum of scores of all 30 students is calculated as shown below
The sum of all scores of all 30 students after correction
The mean score after correction is calculated as shown below
The median of the data of scores obtained by all students in the exam has no impact on changing the score of the top student as the middle value will still be 80.5. Thus the median after correction is 80.5.
Conclusion:
The mean score is 81.6 and the median score is 80.5. Thus option B is correct.
Chapter 10 Solutions
PRECALCULUS:GRAPHICAL,...-NASTA ED.
- Pls help ASAParrow_forward9. a) Determie values of a and b so that the function is continuous. ax - 2b f(x) 2 x≤-2 -2x+a, x ≥2 \-ax² - bx + 1, −2 < x < 2) 9b) Consider f(x): = 2x²+x-3 x-b and determine all the values of b such that f(x) does not have a vertical asymptote. Show work.arrow_forwardPls help ASAParrow_forward
- 3. True False. If false create functions that prove it is false. Note: f(x) = g(x). a) If_lim ƒ(x) = ∞ and_lim g(x) = ∞,then_lim [ƒ(x) − g(x)] = 0 x→ 0+ x→0+ x→0+ b) If h(x) and g(x) are continuous at x = c, and if h(c) > 0 and g(c) = 0, then h(x) lim. will = x→c g(x) c) If lim f(x) = 0 and lim g(x) = 0 then lim f(x) does not exist. x-a x-a x→a g(x)arrow_forwardPls help ASAParrow_forward15. a) Consider f(x) = x-1 3x+2 and use the difference quotient to determine the simplified expression in terms of x, for the slope of any tangent to y = f(x). Also, determine the slope at x = 2. 15 b) Determine the equation of the tangent to f(x) at x = 2. Final answer in Standard Form Ax + By + C = 0, A ≥ 0, with no fractions or decimals.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





