Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 7.146P
To determine
The rate of evaporation from a single droplet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A drier requires 1.5 m3/s of air at 338 K, 1 atm, and 20% relative humidity. This is to be prepared from air at 300 K dry-bulb, 291 K wet-bulb temperatures by direct injection of steam into the airstream followed by passage of the air over steam-heated finned tubes. The available steam is saturated at 383 K. Calculate the kilograms of steam per second required for (a) direct injection and (b) the heat exchanger. Assume that in the heat exchanger the steam condenses at constant temperature.
In order to increase the humidity of an air stream having a temperature of 55°C and humidity
of 0.002 kg/kg, water is sprayed into it in the form of a fine mist; the mist droplets evaporate in
the airstream. The water temperature is 20°C and the flow rate of the airstream is 10 kg/s (dry
air). What flow rate of water would be required to bring the relative humidity to 50% and what
would be the temperature of the resultant stream?
A room is to be maintained at a state of 20 celsius degree dry-bulb and 50 percent saturation by a plant handling 0.5 m^3/s of outside air at a state of 0 celsius degree. the air steam is heated to a temperature warm enough to offset a heat loss of 2.5kw and dry steam is then injected to maintain the humidity required in the room. calculate the supply air tempetaure and the heating and humidification loads ?
Chapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 7 - Consider the following fluids at a film...Ch. 7 - Engine oil at 100C and a velocity of 0.1 m/s flows...Ch. 7 - Consider steady, parallel flow of atmospheric air...Ch. 7 - Consider a liquid metal (Pr1), with free stream...Ch. 7 - Consider the velocity boundary layer profile for...Ch. 7 - Consider a steady, turbulent boundary layer on and...Ch. 7 - Consider flow over a flat plate for which it is...Ch. 7 - A flat plate of width 1 m is maintained at a...Ch. 7 - An electric air heater consists of a horizontal...Ch. 7 - Consider atmospheric air at 25C and a velocity of...
Ch. 7 - Repeat Problem 7.11 for the case when the boundary...Ch. 7 - Consider water at 27°C in parallel flow over an...Ch. 7 - Explain under what conditions the total rate of...Ch. 7 - In fuel cell stacks, it is desirable to operate...Ch. 7 - The roof of a refrigerated truck compartment is of...Ch. 7 - The top surface of a heated compartment consists...Ch. 7 - Calculate the value of the average heat transfer...Ch. 7 - The proposed design for an anemometer to determine...Ch. 7 - Steel (AISI 1010) plates of thickness =6mm and...Ch. 7 - Consider a rectangular fin that is used to cool a...Ch. 7 - The Weather Channel reports that it is a hot,...Ch. 7 - In the production of sheet metals or plastics, it...Ch. 7 - An array of electronic chips is mounted within a...Ch. 7 - A steel strip emerges from the hot roll section of...Ch. 7 - In Problem 7.23. an anemometer design was...Ch. 7 - One hundred electrical components, each...Ch. 7 - The boundary layer associated with parallel flow...Ch. 7 - Forced air at 250C and 10 m/s is used to cool...Ch. 7 - Air at atmospheric pressure and a temperature of...Ch. 7 - Consider a thin, 50mm50mm fuel cell similar to...Ch. 7 - The cover plate of a flat-plate solar collector is...Ch. 7 - An array of 10 silicon chips, each of length...Ch. 7 - A square (10mm10mm) silicon chip is insulated on...Ch. 7 - A circular pipe of 25-mm outside diameter is...Ch. 7 - An L=1-m- long vertical copper tube of inner...Ch. 7 - A long, cylindrical, electrical heating element of...Ch. 7 - Consider the conditions of Problem 7.49, but now...Ch. 7 - Pin fins are to be specified for use in an...Ch. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - Hot water at 500C is routed from one building in...Ch. 7 - In a manufacturing process, long aluminum rods of...Ch. 7 - Prob. 7.58PCh. 7 - To determine air velocity changes, it is proposed...Ch. 7 - Determine the convection heat loss from both the...Ch. 7 - Prob. 7.63PCh. 7 - Prob. 7.64PCh. 7 - Prob. 7.67PCh. 7 - A thermocouple is inserted into a hot air duct to...Ch. 7 - Consider a sphere with a diameter of 20 mm and a...Ch. 7 - Prob. 7.76PCh. 7 - A spherical, underwater instrument pod used to...Ch. 7 - Worldwide. over a billion solder balls must be...Ch. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Consider the plasma spray coating process of...Ch. 7 - Prob. 7.83PCh. 7 - Tissue engineering involves the development of...Ch. 7 - Consider temperature measurement in a gas stream...Ch. 7 - Prob. 7.89PCh. 7 - A preheater involves the use of condensing steam...Ch. 7 - Prob. 7.91PCh. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - Repeat Problem 7.94, but with NL=7,NT=10, and...Ch. 7 - Heating and cooling with miniature impinging jets...Ch. 7 - A circular transistor of 10-mm diameter is cooled...Ch. 7 - A long rectangular plate of AISI 304 stainless...Ch. 7 - A cryogenic probe is used to treat cancerous skin...Ch. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Consider the packed bed of aluminum spheres...Ch. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.111PCh. 7 - Packed beds of spherical panicles can be sintered...Ch. 7 - Prob. 7.114PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Prob. 7.118PCh. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Dry air at 35°C and a velocity of 20 m/s flows...Ch. 7 - Prob. 7.123PCh. 7 - Benzene, a known carcinogen, has been spilled on...Ch. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Condenser cooling water for a power plant is...Ch. 7 - Prob. 7.128PCh. 7 - In a paper-drying process, the paper moves on a...Ch. 7 - Prob. 7.131PCh. 7 - Prob. 7.132PCh. 7 - Prob. 7.133PCh. 7 - Prob. 7.134PCh. 7 - Prob. 7.136PCh. 7 - It has been suggested that heat transfer from a...Ch. 7 - Prob. 7.138PCh. 7 - Cylindrical dry-bulb and wet-bulb thermometers are...Ch. 7 - The thermal pollution problem is associated with...Ch. 7 - Cranberries are harvested by flooding the bogs in...Ch. 7 - A spherical drop of water, 0.5 mm in diameter, is...Ch. 7 - Prob. 7.143PCh. 7 - Prob. 7.144PCh. 7 - Prob. 7.145PCh. 7 - Prob. 7.146PCh. 7 - Prob. 7.147PCh. 7 - Consider an air-conditioning system composed of a...Ch. 7 - Prob. 7.149P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In a falling-film evaporator, Air at 40℃ and 50 kPa flows through a wetted-wall column with 100 mm diameter at a velocity of 5 m/s. What is the mass-transfer coefficient for the humidification of this stream by evaporation from the wet walls? If the air in this situation is 50 % saturated, and the saturation particle pressure of water vapour at 40℃ is 7375 Pa, what is the local evaporation flux in a unit of kg/m²s?arrow_forwardA manufacturing plant produces an efluent as a waste product. As part of a waste heat recovery system, they want to use this for internal heating and cooling. The effluent is flown through a system where its temperature remains at 303.15 K. A 0.06-m diameter pipe carrying hot water and 0.04-m diameter pipe carrying cold air is passed through this effluent chamber. It can be assumed that the surface temperature of these air and water pipes are same as the effluent temperature. Water comes in at 328.15 K and exits at 308.15 K. The air comes in at 268.15 K and exits at 298.15 K. The mass flow rate of water and air is respectively, 1 kg/s and 0.01 kg/s. Determine the length of the water and air pipes in the system. Convert all calculations to C.arrow_forwardAir is cooled and dehumidified as it flows over the coils of a refrigeration system at 100 kPa from 30'C and a humidity ratio of 0.023 kg/kg dry air to 15'C and a humidity ratio of 0.015 ka/kg dry air. Use appropriate software for calculations. If the mass flow rate of dry air is 0.4 kg/s, the rate of heat removal from the air is Multiple Choice 14 kJ/s 16 kJ/s 8 kJ/s 6 kJ/sarrow_forward
- Is latent heat load of infiltration necessarily zero when the humidity ratio (absolute humidity) of the hot outside air in summer is the same as that of inside air? Explain.arrow_forwardMechanical Engineering Suggest an appropriate air-cooling mechanism that is able to precisely deliver an effective coil cooling load needed in maintaining the temperature and humidity for the space of interest. Determine quantitatively the coil cooling load with the concern of unavoidable bypass factor.arrow_forwardAir at 25°C and atmospheric pressure flows with a velocity of 3 m/s inside a 10mm diameter tube of 1 m length. The inside surface of the tube contains a deposit of naphthalene. Determine the average mass transfer coefficient for the transfer of naphthalene from the pipe surface into the air.arrow_forward
- An auditorium to be air-conditioned for the following conditions, Outdoor dry-bulb temperature 40 °C Outdoor wet-bulb temperature 20°C Expected comfort condition 20 DBT 60%RH Seating capacity of the auditorium 1500 persons Air supplied from outdoor 0.3 m¥min per person f the required condition is achieved first by adibatic humidification and then by cooling, determine () the capacity of the cooling coil in tonnes and (i) the capacity of humidifier in kg/h.arrow_forwardA room is to be maintained at a condition of 20°C dry-bulb and 7.376 g/kg moisture content by air supplied at 15°C dry-bulb when the heat gains are 7 kW sensible and 1.4 kW latent. Calculate the weight of air to be supplied to the room and the moisture content at which it should be supplied. Take the latent heat of evaporation at room condition as 2454 kJ /kg.arrow_forwardOne of the major concern in the cold weather condition is the condensation of the moisture present in the air. Usually the temperature inside a house is not uniform and the condensation frequently takes place at the region of lower air temperature especially on the inner surfaces of the windows. If the house contains air at 15°℃ and relative humidity of 75%, what minimum temperature should be maintained to avoid the condensation?arrow_forward
- An auditorium to be air-conditioned for the following conditions, Outdoor dry-bulb temperature 40 °C Outdoor wet-bulb temperature 20°C Expected comfort condition 20 DBT 60%RH Seating capacity of the auditorium 1500 persons Air supplied from outdoor 0.3 m¥min per person fthe required condition is achieved first by adiabatic humidification and then by cooling, determine () the capacity of the cooling coil in tonnes and (i) the capacity of humidifier in kg/h.arrow_forwardIf the air temperature at 18:00h is 8 C, and the air adjacent to the surface has a relative humidity of 70%, at what time will condensation occur if the evening cooling rate is 1 C/hour? Will the condensation be in the form of dew or frost?arrow_forwardAtmospheric air, which is a mixture of dry air and water vapour, is supplied into ducting with a cooling coil. Initially it has a relative humidity of 0.57, volumetric flow rate of 0.72 mis and temperature of 17°C. The atmospheric air is then passed over a cooling coil such that the temperature drops to 6°C. As this is below the dew point, the water vapour condensates after cooling coll and the air leaves in a saturated state. Assuming the barometric pressure of atmosphenic air to be 1.01325 bar, determine the folowing quantities in question parts () to (vi): (1) Partial pressure of water vapour in the air and water vapour mixture entering, Pularrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
How to make metal stronger by heat treating, alloying and strain hardening; Author: Billy Wu;https://www.youtube.com/watch?v=7lM-Y4XndsE;License: Standard Youtube License