Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.132P
(a)
To determine
The convection
(b)
To determine
Compare the result with an estimate from an appropriate correlation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How does an increase in gas temperature affect pressure drop in a haghouse, assuming the mass flow rate of particles and the molar flow rate of gas are constant?
Calculate the time taken for a 7 um radius cloud
droplet to grow via condensation into a 3500 um
rain droplet. Assume a super-saturation of
1.55%, a water vapour density of 3 g m-3, and a
water vapour diffusion coefficient in dry air of
D=24 x10-6 m2 S -1
PLEASE SHOW CALCULATION
Q6/ It is required to enhance the wear resistance of steel part by Nitriding process. To perform such task,
the nitrogen surface concentration must be increased to 0.5 wt% while the initial value was 0.002 wt%.
The nitrogen gas with constant temperature is provided from external source. To optimize the diffusion
process; the subsurface layer of 0.4 mm depth, must has nitrogen content of 0.1 wt%. Find out the
required process temperature to accomplish this treatment at 1.6 hour. The values of activation energy
and preexponential for the nitrogen in iron at this temperature are 76,150 J/mol and 3 x 107 m2/s,
respectively.
erf(z)
erf(z)
erf(z)
0.55
0.5633
1.3
0.9340
0.025
0.0282
0.60
0.6039
1.4
0.9523
0.05
0.0564
0.65
0.6420
1.5
0.9661
0.10
0.1125
0.70
0.6778
1.6
0.9763
0.15
0.1680
0.75
0.7112
1.7
0.9838
0.20
0.2227
0.80
0.7421
1.8
0.9891
0.25
0.2763
0.85
0.7707
1.9
0.9928
0.30
0.3286
0.90
0.7970
2.0
0.9953
0.35
0.3794
0.95
0.8209
2.2
0.9981
0.40
0.4284
1.0
0.8427
2.4
0.9993
0.45
0.4755…
Chapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 7 - Consider the following fluids at a film...Ch. 7 - Engine oil at 100C and a velocity of 0.1 m/s flows...Ch. 7 - Consider steady, parallel flow of atmospheric air...Ch. 7 - Consider a liquid metal (Pr1), with free stream...Ch. 7 - Consider the velocity boundary layer profile for...Ch. 7 - Consider a steady, turbulent boundary layer on and...Ch. 7 - Consider flow over a flat plate for which it is...Ch. 7 - A flat plate of width 1 m is maintained at a...Ch. 7 - An electric air heater consists of a horizontal...Ch. 7 - Consider atmospheric air at 25C and a velocity of...
Ch. 7 - Repeat Problem 7.11 for the case when the boundary...Ch. 7 - Consider water at 27°C in parallel flow over an...Ch. 7 - Explain under what conditions the total rate of...Ch. 7 - In fuel cell stacks, it is desirable to operate...Ch. 7 - The roof of a refrigerated truck compartment is of...Ch. 7 - The top surface of a heated compartment consists...Ch. 7 - Calculate the value of the average heat transfer...Ch. 7 - The proposed design for an anemometer to determine...Ch. 7 - Steel (AISI 1010) plates of thickness =6mm and...Ch. 7 - Consider a rectangular fin that is used to cool a...Ch. 7 - The Weather Channel reports that it is a hot,...Ch. 7 - In the production of sheet metals or plastics, it...Ch. 7 - An array of electronic chips is mounted within a...Ch. 7 - A steel strip emerges from the hot roll section of...Ch. 7 - In Problem 7.23. an anemometer design was...Ch. 7 - One hundred electrical components, each...Ch. 7 - The boundary layer associated with parallel flow...Ch. 7 - Forced air at 250C and 10 m/s is used to cool...Ch. 7 - Air at atmospheric pressure and a temperature of...Ch. 7 - Consider a thin, 50mm50mm fuel cell similar to...Ch. 7 - The cover plate of a flat-plate solar collector is...Ch. 7 - An array of 10 silicon chips, each of length...Ch. 7 - A square (10mm10mm) silicon chip is insulated on...Ch. 7 - A circular pipe of 25-mm outside diameter is...Ch. 7 - An L=1-m- long vertical copper tube of inner...Ch. 7 - A long, cylindrical, electrical heating element of...Ch. 7 - Consider the conditions of Problem 7.49, but now...Ch. 7 - Pin fins are to be specified for use in an...Ch. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - Hot water at 500C is routed from one building in...Ch. 7 - In a manufacturing process, long aluminum rods of...Ch. 7 - Prob. 7.58PCh. 7 - To determine air velocity changes, it is proposed...Ch. 7 - Determine the convection heat loss from both the...Ch. 7 - Prob. 7.63PCh. 7 - Prob. 7.64PCh. 7 - Prob. 7.67PCh. 7 - A thermocouple is inserted into a hot air duct to...Ch. 7 - Consider a sphere with a diameter of 20 mm and a...Ch. 7 - Prob. 7.76PCh. 7 - A spherical, underwater instrument pod used to...Ch. 7 - Worldwide. over a billion solder balls must be...Ch. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Consider the plasma spray coating process of...Ch. 7 - Prob. 7.83PCh. 7 - Tissue engineering involves the development of...Ch. 7 - Consider temperature measurement in a gas stream...Ch. 7 - Prob. 7.89PCh. 7 - A preheater involves the use of condensing steam...Ch. 7 - Prob. 7.91PCh. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - Repeat Problem 7.94, but with NL=7,NT=10, and...Ch. 7 - Heating and cooling with miniature impinging jets...Ch. 7 - A circular transistor of 10-mm diameter is cooled...Ch. 7 - A long rectangular plate of AISI 304 stainless...Ch. 7 - A cryogenic probe is used to treat cancerous skin...Ch. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Consider the packed bed of aluminum spheres...Ch. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.111PCh. 7 - Packed beds of spherical panicles can be sintered...Ch. 7 - Prob. 7.114PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Prob. 7.118PCh. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Dry air at 35°C and a velocity of 20 m/s flows...Ch. 7 - Prob. 7.123PCh. 7 - Benzene, a known carcinogen, has been spilled on...Ch. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Condenser cooling water for a power plant is...Ch. 7 - Prob. 7.128PCh. 7 - In a paper-drying process, the paper moves on a...Ch. 7 - Prob. 7.131PCh. 7 - Prob. 7.132PCh. 7 - Prob. 7.133PCh. 7 - Prob. 7.134PCh. 7 - Prob. 7.136PCh. 7 - It has been suggested that heat transfer from a...Ch. 7 - Prob. 7.138PCh. 7 - Cylindrical dry-bulb and wet-bulb thermometers are...Ch. 7 - The thermal pollution problem is associated with...Ch. 7 - Cranberries are harvested by flooding the bogs in...Ch. 7 - A spherical drop of water, 0.5 mm in diameter, is...Ch. 7 - Prob. 7.143PCh. 7 - Prob. 7.144PCh. 7 - Prob. 7.145PCh. 7 - Prob. 7.146PCh. 7 - Prob. 7.147PCh. 7 - Consider an air-conditioning system composed of a...Ch. 7 - Prob. 7.149P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- From an open water surface with air temperature 22°C, relative humidity is 40% and wind speed is 3 m/s, all measured at height 2 m above the water surface. Assume a roughness height of 0.03 cm. The net radiation is 200 W/m^2. Cp = 1005 J/kg-K A. Calculate the latent heat of vaporization (J/kg) B. Calculate the evaporation using Energy Balance Method (mm/day) C. Calculate the saturation deficit of the vapor pressure (Pa) D. Calculate the evaporation using Priestley-Taylor Method (mm/day)arrow_forward10A.5. Free convection velocity. (a) Verify the expression for the average velocity in the upward-moving stream in Eq. 10.9-16. (b) Evaluate 3 for the conditions given below. (c) What is the average velocity in the upward-moving stream in the system described in Fig. 10.9-1 for air flowing under these conditions? Pressure Temperature of the heated wall Temperature of the cooled wall Spacing between the walls Answer: 2.3 cm/s T3=0°F. Wall 1 atm 100°C 20°C 0.6 cm -T₂ = 61°F Surface temperatures -T₁ = 69°F of plastic panel Plastic panel has thermal conductivity k = 0.075 Btu/hr. ft. °F (average value between T₁ and T₂) -0.502" Fig. 10A.6. Determination of the thermal resistance of a wall. Problems 321arrow_forwardi need the answer quicklyarrow_forward
- For Cairo Egypt in January the average net radiation 40 W/m2, temperature is 14°C. relative humidity is 65%, and wind speed is 2.0 m/s measured @ a height of 2.0 m. Compute the evaporation rate by 1. Priestley-Taylor Method Zo=0.03arrow_forwardA velocity of the cylindrical particles of diameter and length are 0.3 mm. It is drop in the air tube .The density of the particle is 1200 kg/m³. The initial velocity of the particle is zero. Air conditions are 28 °C and 1 atm. The viscosity of air is 1.8 x 105 kg/m-s, and superficial velocity of air is 11 m/s. The Reynolds number range is between 1100 and 900. (a) Derive an equation of the velocity of the particles with neglect wall effects. (b) How long of distance if the velocity become steady state filling?arrow_forwardIn a falling-film evaporator, Air at 40℃ and 50 kPa flows through a wetted-wall column with 100 mm diameter at a velocity of 5 m/s. What is the mass-transfer coefficient for the humidification of this stream by evaporation from the wet walls? If the air in this situation is 50 % saturated, and the saturation particle pressure of water vapour at 40℃ is 7375 Pa, what is the local evaporation flux in a unit of kg/m²s?arrow_forward
- In cold climates, weather reports usually give both the actual air temperature and the "wind-chill" temperature, which can be interpreted as follows. At the prevailing wind speed there is a rate of heat loss per unit area q, from a clothed person for an air temperature Te. The wind-chill temperature Twe is the air temperature that will give the same rate of heat loss on a calm day. Estimate the wind-chill temperature on a day when the air temperature is -10°C and the wind speed is 10m/s, giving a convective heat transfer coefficient of 50 W/m² K. A radiation heat transfer coefficient of 5 W/m² K can be used, and under calm conditions the convective heat transfer coefficient can be taken to be 5.0 W/m² K. Assume a 3 mm layer of skin (k = 0.35 W/m K), clothing equivalent to 8 mm-thick wool (k = 0.05 W/m K), and a temperature of 35°C below the skin. Also calculate the skin outer temperature.arrow_forwardMerrill et al. (1965) in a series of classic experiments studied the flow of blood in capillary tubes of various diameters. The blood had a hematocrit of 39.3 and the temperature was 20°C. They measured the pressure drop as a function of the flow rate for five tube diameters ranging from 288 to 850 μm. When they expressed the measured pressure drops in terms of the wall shear stress, and the volumetric flow rates in terms of the reduced average velocity, all of the data for the various tube sizes formed, within the experimental accuracy, a single line as predicted by the Rabinowitsch equation expressed in terms of reduced average velocity. From their results they provide the following values of the Casson parameters at 20°C: τy = 0.0289 dynes cm−2 and s = 0.229 (dynes s cm−2)1/2. Using these values for τy and s, show that the equation below for reduced average velocity provides an excellent fit to their data summarized in the following table. (Wall shear stress) τw , dynes cm-2…arrow_forwardAir at 22˚C and at atmospheric pressure flows over a flat plate at a velocity of 1.65 m/s. If the length of the plate is 2.179 m and its temperature is 98 ˚C, Calculate Heat rate by using exact and approximate methods both. What is the %age difference of the heat transfer rate values by these methods? Take width of the plate as unity. Properties given at 60˚C are as follows: Density: 1.058 kg/m3 , cp = 1.005 kJ/kg˚C, k= 0.02897 w/m˚C, Kinematic viscosity is 18.97 × 10-6 m2 /sarrow_forward
- Estimate the mass-transfer coefficient for moist air flowing normal to a 25 mm diameter tube (Nu = 0.615 Re0.47). The air velocity is 0.5 m/s. Assume standard air.arrow_forwardCalculate the mass of 600 mL of carbon dioxide collected over water at 25 deg C and 730 mmHg.arrow_forwardA 1 kHz plane wave traverses freshwater at 15°C. (a) In what distance will it be attenuated by 10 dB? (b) Work the same problem for 20 kHz. (c) What are the corresponding distances in seawater at 15°C? (d) In dry air at 20°C? (e) In air of 10% relative humidity at 20°C?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license