Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 7.109P
(a)
To determine
The mean outlet temperature of the helium leaving the bed and the amount of thermal energy generated by each pellet.
(b)
To determine
The maximum internal temperature of the hottest pellet in the packed bed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Conduction
1. A thermodynamic analysis of a proposed Brayton cycle gas turbine yields P=
5 MW of net power production. The compressor, at an average temperature
of T. = 400°C, is driven by the turbine at an average temperature of T₁ =
1000°C by way of an L = 1m-long, d= 70mm - diameter shaft of thermal
conductivity k = 40 W/m K.
Compressor
min
T
Combustion
chamber
Shaft
L
Turbine
Th
out
(a) Compare the steady-state conduction rate through the shaft connecting the hot
turbine to the warm compressor to the net power predicted by the thermodynamics-
based analysis.
(b) A research team proposes to scale down the gas turbine of part (a), keeping all
dimensions in the same proportions. The team assumes that the same hot and cold
temperatures exist as in part (a) and that the net power output of the gas turbine is
proportional to the overall volume of the device. Plot the ratio of the conduction through
the shaft to the net power output of the turbine over the range 0.005 m s Ls 1 m. Is a…
A Pressurized Water Reactor fuel rod is 12 ft long and 0.374 inches in diameter (outer) on a 0.496 inch
square pitch. The fuel pellet diameter is 0.3225 inches. The fuel rod gap is constant with a width of
0.0065 inches. The system pressure is 2250 psia and can be assumed to be constant. The rod operates
at linear heat rate of 12.1 kW/ft. At the elevation of interest, the coolant temperature is 575 °F with a
convective heat transfer coefficient of 6200- For this elevation determine the temperature
BTU
hr ft²F
margin to boiling according to Jens-Lottes. Also assume constant fluid properties given as:
p=46.39
Ibm
=
,c. 1.261-
BTU
Ibm-F
BTU
-,k=0.334-
hr-ft-F
Ibm
ft-hr
M=0.222- -, Tsat 652.7F
=
A metallic ball of radius ro = 5 mm, is initially in equilibrium at 400 C in a furnace. It is suddenly dropped to water at 20 C ( hw = 11003 W/m^2). The properties of the sphere are density= 3000 kg/m3, k = 20 W/m_ K, c = 1000 J/kg K, and α= 6.66E-6 m2/s. Calculate the time required for the center of the sphere to cool to 50 C.
Chapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 7 - Consider the following fluids at a film...Ch. 7 - Engine oil at 100C and a velocity of 0.1 m/s flows...Ch. 7 - Consider steady, parallel flow of atmospheric air...Ch. 7 - Consider a liquid metal (Pr1), with free stream...Ch. 7 - Consider the velocity boundary layer profile for...Ch. 7 - Consider a steady, turbulent boundary layer on and...Ch. 7 - Consider flow over a flat plate for which it is...Ch. 7 - A flat plate of width 1 m is maintained at a...Ch. 7 - An electric air heater consists of a horizontal...Ch. 7 - Consider atmospheric air at 25C and a velocity of...
Ch. 7 - Repeat Problem 7.11 for the case when the boundary...Ch. 7 - Consider water at 27°C in parallel flow over an...Ch. 7 - Explain under what conditions the total rate of...Ch. 7 - In fuel cell stacks, it is desirable to operate...Ch. 7 - The roof of a refrigerated truck compartment is of...Ch. 7 - The top surface of a heated compartment consists...Ch. 7 - Calculate the value of the average heat transfer...Ch. 7 - The proposed design for an anemometer to determine...Ch. 7 - Steel (AISI 1010) plates of thickness =6mm and...Ch. 7 - Consider a rectangular fin that is used to cool a...Ch. 7 - The Weather Channel reports that it is a hot,...Ch. 7 - In the production of sheet metals or plastics, it...Ch. 7 - An array of electronic chips is mounted within a...Ch. 7 - A steel strip emerges from the hot roll section of...Ch. 7 - In Problem 7.23. an anemometer design was...Ch. 7 - One hundred electrical components, each...Ch. 7 - The boundary layer associated with parallel flow...Ch. 7 - Forced air at 250C and 10 m/s is used to cool...Ch. 7 - Air at atmospheric pressure and a temperature of...Ch. 7 - Consider a thin, 50mm50mm fuel cell similar to...Ch. 7 - The cover plate of a flat-plate solar collector is...Ch. 7 - An array of 10 silicon chips, each of length...Ch. 7 - A square (10mm10mm) silicon chip is insulated on...Ch. 7 - A circular pipe of 25-mm outside diameter is...Ch. 7 - An L=1-m- long vertical copper tube of inner...Ch. 7 - A long, cylindrical, electrical heating element of...Ch. 7 - Consider the conditions of Problem 7.49, but now...Ch. 7 - Pin fins are to be specified for use in an...Ch. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - Hot water at 500C is routed from one building in...Ch. 7 - In a manufacturing process, long aluminum rods of...Ch. 7 - Prob. 7.58PCh. 7 - To determine air velocity changes, it is proposed...Ch. 7 - Determine the convection heat loss from both the...Ch. 7 - Prob. 7.63PCh. 7 - Prob. 7.64PCh. 7 - Prob. 7.67PCh. 7 - A thermocouple is inserted into a hot air duct to...Ch. 7 - Consider a sphere with a diameter of 20 mm and a...Ch. 7 - Prob. 7.76PCh. 7 - A spherical, underwater instrument pod used to...Ch. 7 - Worldwide. over a billion solder balls must be...Ch. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Consider the plasma spray coating process of...Ch. 7 - Prob. 7.83PCh. 7 - Tissue engineering involves the development of...Ch. 7 - Consider temperature measurement in a gas stream...Ch. 7 - Prob. 7.89PCh. 7 - A preheater involves the use of condensing steam...Ch. 7 - Prob. 7.91PCh. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - Repeat Problem 7.94, but with NL=7,NT=10, and...Ch. 7 - Heating and cooling with miniature impinging jets...Ch. 7 - A circular transistor of 10-mm diameter is cooled...Ch. 7 - A long rectangular plate of AISI 304 stainless...Ch. 7 - A cryogenic probe is used to treat cancerous skin...Ch. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Consider the packed bed of aluminum spheres...Ch. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.111PCh. 7 - Packed beds of spherical panicles can be sintered...Ch. 7 - Prob. 7.114PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Prob. 7.118PCh. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Dry air at 35°C and a velocity of 20 m/s flows...Ch. 7 - Prob. 7.123PCh. 7 - Benzene, a known carcinogen, has been spilled on...Ch. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Condenser cooling water for a power plant is...Ch. 7 - Prob. 7.128PCh. 7 - In a paper-drying process, the paper moves on a...Ch. 7 - Prob. 7.131PCh. 7 - Prob. 7.132PCh. 7 - Prob. 7.133PCh. 7 - Prob. 7.134PCh. 7 - Prob. 7.136PCh. 7 - It has been suggested that heat transfer from a...Ch. 7 - Prob. 7.138PCh. 7 - Cylindrical dry-bulb and wet-bulb thermometers are...Ch. 7 - The thermal pollution problem is associated with...Ch. 7 - Cranberries are harvested by flooding the bogs in...Ch. 7 - A spherical drop of water, 0.5 mm in diameter, is...Ch. 7 - Prob. 7.143PCh. 7 - Prob. 7.144PCh. 7 - Prob. 7.145PCh. 7 - Prob. 7.146PCh. 7 - Prob. 7.147PCh. 7 - Consider an air-conditioning system composed of a...Ch. 7 - Prob. 7.149P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An ordinary egg can be approximated as a 5.5-cm-diameter sphere whose thermal conductivity of roughly k = 0.6- W mk overall density of p = 1000; and heat capacity of C₂ = 3000- kg m² The egg is initially at a uniform temperature of T₂ = 10°C and is dropped into boiling water at T.. = 90°C W - determine how long it will take for the egg to m²K Taking the convective heat transfer coefficient to be h reach T = 70°C. In solving the problem, please follow the steps below. For the Lump Model In solving this problem, please use the lump model method (ignoring the requirement of small Biot number and discuss the outcomes, 1. 2. Compute the characteristic length Lc Compute the volume and surface area of the sphere (as the egg model) Vol As 3. Compute the diffusivity α = = 10- k p Cp = J kgk Compute non-dimensional excessive temperature 0 = h Lc k 4. Compute the Biot number using the characteristic length found above Bi = T-Too 5. Ti-Too 6. Calculate the Fourier number from the equation =…arrow_forwardA 30-cm-radius metallic sphere is having thermal conductivity of k = 100. overall density of W 7 mk p = 1500- kg m² and heat capacity of C₂ = 3000 The sphere is initially at a uniform temperature of kgk CO T₁ = 20°C and is dropped into boiling water at T = 90°C. The convective heat transfer coefficient is assumed to be only h = 50; W m²K Using lump model, compute the temperature of the sphere after t = 1200 seconds. In solving this problem, please use and show the following steps (do not use EES) 1. Compute the volume and surface area 2. Compute the characteristic length Lc = k p Cp h Lc 4. Compute the Biot number Bi k 5. Calculate the Fourier number Fo= (at)/Lc² 6. Calculate the excess temperature using 0 = exp(-Bi * Fo) T-Too 7. Compute the target temperature T using 0 = Ti-Too 3. Compute the diffusivity a = = the sphere Vol Vol As == 3 r³ and А¸ = 4πr²arrow_forwarda) A turbine blade 6 cm long and having a cross sectional area 4.65 cm and perimeter 12 cm is made of stainless steel (k=23.3 Wim K). The temperature at the root is 500 C. The blade is exposed to a hot gas at 870 °C. The heat transfer coefficient between the blade surface and gas is 442 W/im K. Determine the temperature distribution and rate of beat flow at the root of the blade, Assume the tip of the blade to be insulated. b) The hot combustion gases of a fumace are separated from the ambient air and its surounding, which are at 20°C, by a brick wall 0.5 m thick. The brick has a themal conductivity of 5 W/mk and a surface emissivity of 0.6. Under steady-state conditions an Page no.1 of 1 outer surface temperature of 120°C is measured Free convection heat transter to the air adjoining the surface is characterized by a convection coefficient of 15 Wim K What is the brick inner surface temperaturearrow_forward
- In a thermal power plant, a horizontal copper pipe of "D" diameter, "L" length and thickness 1.2 cm enters into the boiler that has the thermal conductivity as 0.37 W/mK. The boiler is maintained at 113C and temperature of the water that flows inside the pipe is at 29C. If the energy transfer (Q) is 118779 kJ in 7 hours. Calculate: 4-Length of the pipe, if D = 0.017 L. 5-Pipe Diameter (in mm)arrow_forward2 (a) A short bronze cylinder of diameter 6 cm and length 12 cm is initially at 40°C and then plunged into a fluid at 200°C. The temperature at the centre of the cylinder is measured by a thermocouple to be 150°C after 5 minutes. What is the convective heat transfer coefficient between the cylinder and the fluid? The following properties of the bronze cylinder may be used: Thermal conductivity k = 26 W/m-K, density p = 8800 kg/m², and specific heat c = 420 J/kg-K. State and justify all assumptions made.arrow_forwardThe 0.5 m x 1.2 m wall of an industrial furnace is constructed from L = 0.15-m-thick fireclay brick having a thermal conductivity of 1.7 W/m-K. The temperature distribution, at an instant in time, is T(x) = a + bxwhere a = 140O K and b = -1050 K/m. Determine the heat fluxes, q, and heat rates, q,, at x = 0 and x = L, in W/m2 and W respectively. Do steady-state conditions exist? i W/m? i W/m? Ix=0 = i W Ix=L = i Warrow_forward
- Need help on the Q.arrow_forwardThe 0.5 m x 1.2 m wall of an industrial furnace is constructed from L = 0.15-m-thick fireclay brick having a thermal conductivity of 1.7 W/m-K. The temperature distribution, at an instant in time, is T(x) = a + bxwhere a = 1400 K and b = -1050 K/m. Determine the heat fluxes, q, and heat rates, q,, at x = 0 and x = L, in W/m2 and W respectively. Do steady-state conditions exist? W/m2 1x=0 i W/m? i W Ix=0 = Ir=L = i W Steady-state conditions exist.arrow_forward8--The reactor from uniform carbide and graphite as a cylinder rod with diameter of 12 mm. The volumetric heat liberationis 3.88x108 W/m3 The thermal conductivity of the rod material is 85 W/mC.. Determine the heat losses from the rod and the surface temperature if the maximum temperature of the rod is 200C...Ans Tw=1940 C,,Heat losses=1.164 MW/m2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer [Conduction, Convection, and Radiation]; Author: Mike Sammartano;https://www.youtube.com/watch?v=kNZi12OV9Xc;License: Standard youtube license