Cranberries are harvested by flooding the bogs in which they are grown and raking them into troughs for transport. At the processing plant, the surface moisture on the berries is removed as they roll over a fine screen through which warm air is blown. The berries have an average diameter of 15 mm, and the thickness of the water layer is 0.2 mm.
If the velocity and temperature of the heated air are 2m/s and 30°C, respectively, estimate the time required to dry the berries. Assume that the water film on the berries is also at 30°C.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
Manufacturing Engineering & Technology
Heating Ventilating and Air Conditioning: Analysis and Design
Statics and Mechanics of Materials (5th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Engineering Mechanics: Statics & Dynamics (14th Edition)
- 5.7 The average Reynolds number for air passing in turbulent flow over a 2-m-long, flat plate is . Under these conditions, the average Nusselt number was found to be equal to 4150. Determine the average heat transfer coefficient for an oil having thermal properties similar to those in Appendix 2, Table 18, at at the same Reynolds number and flowing over the same plate.arrow_forwardA 0.4-W cylindrical electronic component with diameter 0.3 cm and length 1.8 cm and mounted on a circuit board is cooled by air flowing across it at a velocity of 240 m/min. If the air temperature is 35°C, determine the surface temperature of the component. For air properties evaluations assume a film temperature of 50°C. Is this a good assumption?arrow_forwardWater at 43.3°C flows over a large square plate at a velocity of 20 cm/s. The plate is 2 m long (in the flow direction) and its surface is maintained at a uniform temperature of 10.0°C. The width of the plate is 2 m. Calculate the steady rate of heat transfer for the entire width of the plate in watts (W). The properties of water at the film temperature of (Ts + T∞)/2 = (10 + 43.3)/2 = 27°C are p = 996.6 kg/m³, k= 0.610 W/m-°C, μ = 0.854 x 10-3 kg/m-s, and Pr = 5.85. The steady rate of heat transfer per unit width of the plate is W.arrow_forward
- Liquid ammonia is transported from a production plant to a processing center via a 0.6-m diameter pipeline at a mass flow rate of 0.15 kg/s. Surface temperature of the pipe is maintained 0°C by using a cooling jacket with ice-cold water. Ammonia enters the pipeline at -17°C and exits at -3°C. Assume the flow is both hydrodynamically and thermally fully developed in the pipe. What is the length of the pipe? 1857marrow_forwardFor safety reasons, parts can be directly blown by air. with dimensions of 15 cmx20 cm, which are not allowed to contact printed circuit board, 20 cm long 0.2 opened inside Cold air from a rectangular hole of cmx14 cm will be cooled. from electronic parts The heat generated is transmitted from the thin layer of the card to the duct, where it is combined with the air entering the duct at a temperature of 15 °C. is removed. The heat flux on the upper surface of the channel can be considered uniform and The heat transfer from the surfaces can be neglected. If the velocity of the air in the duct does not exceed (590) m/min and the surface temperature of the duct is constant at 50 °C, this circuit board can be safely placed on it. Calculate the maximum total power of the electronic parts to be placed.arrow_forwarddetermine pressure droparrow_forward
- Exhaust gases at 1 atm and 300°C are used to preheat water in an industrial facility by passing them over a bank of tubes through which water is flowing at a rate of 6 kg/s. The mean tube wall temperature is 80°C. Exhaust gases approach the tube bank in normal direction at 4.5 m/s. The outer diameter of the tubes is 0.035 m, and the tubes are arranged in-line with longitudinal and transverse pitches of SL = ST = 0.09 m. There are 16 rows in the flow direction with eight tubes in each row. Assume the air properties at 250°C and 1 atm. The air properties at the assumed mean temperature of 250°C and 1 atm are k = 0.04104 W/m·K ρ = 0.6746 kg/m3cp =1.033 kJ/kg·K Pr = 0.6946μ = 2.76 × 10−5 kg/m·s Prs = Pr@Ts = 80°C = 0.7154 The density of air at the inlet temperature of 300°C (for use in the mass flow rate calculation at the inlet) is ρi = 0.6158 kg/m3. The specific heat of water at 80°C is 4.197 kJ/kg·°C. Determine the temperature…arrow_forwardExhaust gases at 1 atm and 300°C are used to preheat water in an industrial facility by passing them over a bank of tubes through which water is flowing at a rate of 6 kg/s. The mean tube wall temperature is 80°C. Exhaust gases approach the tube bank in normal direction at 4.5 m/s. The outer diameter of the tubes is 0.035 m, and the tubes are arranged in-line with longitudinal and transverse pitches of SL = ST = 0.09 m. There are 16 rows in the flow direction with eight tubes in each row. Assume the air properties at 250°C and 1 atm. The air properties at the assumed mean temperature of 250°C and 1 atm are k = 0.04104 W/m·K ρ = 0.6746 kg/m3cp =1.033 kJ/kg·K Pr = 0.6946μ = 2.76 × 10−5 kg/m·s Prs = Pr@Ts = 80°C = 0.7154 The density of air at the inlet temperature of 300°C (for use in the mass flow rate calculation at the inlet) is ρi = 0.6158 kg/m3. The specific heat of water at 80°C is 4.197 kJ/kg·°C. Determine the rate of…arrow_forwardExhaust gases at 1 atm and 300°C are used to preheat water in an industrial facility by passing them over a bank of tubes through which water is flowing at a rate of 6 kg/s. The mean tube wall temperature is 80°C. Exhaust gases approach the tube bank in normal direction at 4.5 m/s. The outer diameter of the tubes is 0.035 m, and the tubes are arranged in-line with longitudinal and transverse pitches of SL = ST = 0.09 m. There are 16 rows in the flow direction with eight tubes in each row. Assume the air properties at 250°C and 1 atm. The air properties at the assumed mean temperature of 250°C and 1 atm are k = 0.04104 W/m·K ρ = 0.6746 kg/m3cp =1.033 kJ/kg·K Pr = 0.6946μ = 2.76 × 10−5 kg/m·s Prs = Pr@Ts = 80°C = 0.7154 The density of air at the inlet temperature of 300°C (for use in the mass flow rate calculation at the inlet) is ρi = 0.6158 kg/m3. The specific heat of water at 80°C is 4.197 kJ/kg·°C. Determine pressure…arrow_forward
- Calculate the rate at which the average friction coefficient, friction force and heat transfer rate will change if the free flow rate of the turbulent air flowing parallel to the plate over a smooth plate is doubled. Does the result change for constant temperature and constant heat flux conditions; Please evaluate.arrow_forwardExample 1: The components of an electronic system are located in a 1.5-m-long horizontal duct whose cross section is 20 cm * 20 cm. The components in the duct are not allowed to come into direct contact with cooling air, and thus are cooled by air at 30°C flowing over the duct with a velocity of 200 m/min. If the surface temperature of the duct is not to exceed 65°C, determine the total power rating of the electronic devices that can be mounted into the duct. Electronic components inside 30°C 200 m/min - 65°C Air 1.5 m 20 cmarrow_forwardAir is to be heated by passing it over a bank of 4-m-long tubes inside which steam is condensing at 100°C. Air approaches the tube bank in the normal direction at 20°C and 1 atm with a mean velocity of 5.2 m/s. The outer diameter of the tubes is 0.016 m, and the tubes are arranged staggered with longitudinal and transverse pitches of SL = ST = 0.03 m. There are 20 rows in the flow direction with 10 tubes in each row. Assume the air properties at mean temperature of 35°C and 1 atm. The air properties at the assumed mean temperature of 35°C and 1 atm are k = 0.02625 W/m·K, ρ = 1.145 kg/m3, cp = 1.007 kJ/kg·K, Pr = 0.7268, μ = 1.895 × 10−5 kg/m·s, Prs = Pr@Ts = 100°C = 0.7111. Determine the pressure drop across the tube bankarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning