Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.126P
(a)
To determine
Variation of local
(b)
To determine
Drying rate for fastest drying plate.
(c)
To determine
Heat addition needed to maintain the plate temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air is flowing at a speed of 30 m/sec over a flat plate. The air temperature is 20o C and its pressure is 1 atm. The plate is kept at a constant temperature of 65o C. What is the heat transfer rate per unit length between 7.5 cm to 30 cm, from the edge of the plate?
Air is flowing at a speed of 5 m/sec between two parallel flat plates. The air temperature is 20o C and its pressure is 1 atm. The plates are kept at a constant temperature of 90o C and the distance between them is 60 cm. The plates width is 1 m and their length is 1.5 m. What is the electrical power required to keep the plates at constant temperature?
Engine oil at 100°C flows on the top surface of a 1-m-long flat plate maintained at 20°C. The oil’s freestream speed (u infinity) is 0.1 m/s. Find the engine oil properties from the table A.5
A. Evaluate the Reynolds number, local convection coefficient, heat flux and shear stress at the end of the plate (x = L). Is the air flow laminar or turbulent over the plate?B. Evaluate the average convection coefficient, average heat flux, average shear stress and drag force over the plate.
Chapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 7 - Consider the following fluids at a film...Ch. 7 - Engine oil at 100C and a velocity of 0.1 m/s flows...Ch. 7 - Consider steady, parallel flow of atmospheric air...Ch. 7 - Consider a liquid metal (Pr1), with free stream...Ch. 7 - Consider the velocity boundary layer profile for...Ch. 7 - Consider a steady, turbulent boundary layer on and...Ch. 7 - Consider flow over a flat plate for which it is...Ch. 7 - A flat plate of width 1 m is maintained at a...Ch. 7 - An electric air heater consists of a horizontal...Ch. 7 - Consider atmospheric air at 25C and a velocity of...
Ch. 7 - Repeat Problem 7.11 for the case when the boundary...Ch. 7 - Consider water at 27°C in parallel flow over an...Ch. 7 - Explain under what conditions the total rate of...Ch. 7 - In fuel cell stacks, it is desirable to operate...Ch. 7 - The roof of a refrigerated truck compartment is of...Ch. 7 - The top surface of a heated compartment consists...Ch. 7 - Calculate the value of the average heat transfer...Ch. 7 - The proposed design for an anemometer to determine...Ch. 7 - Steel (AISI 1010) plates of thickness =6mm and...Ch. 7 - Consider a rectangular fin that is used to cool a...Ch. 7 - The Weather Channel reports that it is a hot,...Ch. 7 - In the production of sheet metals or plastics, it...Ch. 7 - An array of electronic chips is mounted within a...Ch. 7 - A steel strip emerges from the hot roll section of...Ch. 7 - In Problem 7.23. an anemometer design was...Ch. 7 - One hundred electrical components, each...Ch. 7 - The boundary layer associated with parallel flow...Ch. 7 - Forced air at 250C and 10 m/s is used to cool...Ch. 7 - Air at atmospheric pressure and a temperature of...Ch. 7 - Consider a thin, 50mm50mm fuel cell similar to...Ch. 7 - The cover plate of a flat-plate solar collector is...Ch. 7 - An array of 10 silicon chips, each of length...Ch. 7 - A square (10mm10mm) silicon chip is insulated on...Ch. 7 - A circular pipe of 25-mm outside diameter is...Ch. 7 - An L=1-m- long vertical copper tube of inner...Ch. 7 - A long, cylindrical, electrical heating element of...Ch. 7 - Consider the conditions of Problem 7.49, but now...Ch. 7 - Pin fins are to be specified for use in an...Ch. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - Hot water at 500C is routed from one building in...Ch. 7 - In a manufacturing process, long aluminum rods of...Ch. 7 - Prob. 7.58PCh. 7 - To determine air velocity changes, it is proposed...Ch. 7 - Determine the convection heat loss from both the...Ch. 7 - Prob. 7.63PCh. 7 - Prob. 7.64PCh. 7 - Prob. 7.67PCh. 7 - A thermocouple is inserted into a hot air duct to...Ch. 7 - Consider a sphere with a diameter of 20 mm and a...Ch. 7 - Prob. 7.76PCh. 7 - A spherical, underwater instrument pod used to...Ch. 7 - Worldwide. over a billion solder balls must be...Ch. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Consider the plasma spray coating process of...Ch. 7 - Prob. 7.83PCh. 7 - Tissue engineering involves the development of...Ch. 7 - Consider temperature measurement in a gas stream...Ch. 7 - Prob. 7.89PCh. 7 - A preheater involves the use of condensing steam...Ch. 7 - Prob. 7.91PCh. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - Repeat Problem 7.94, but with NL=7,NT=10, and...Ch. 7 - Heating and cooling with miniature impinging jets...Ch. 7 - A circular transistor of 10-mm diameter is cooled...Ch. 7 - A long rectangular plate of AISI 304 stainless...Ch. 7 - A cryogenic probe is used to treat cancerous skin...Ch. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Consider the packed bed of aluminum spheres...Ch. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.111PCh. 7 - Packed beds of spherical panicles can be sintered...Ch. 7 - Prob. 7.114PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Prob. 7.118PCh. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Dry air at 35°C and a velocity of 20 m/s flows...Ch. 7 - Prob. 7.123PCh. 7 - Benzene, a known carcinogen, has been spilled on...Ch. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Condenser cooling water for a power plant is...Ch. 7 - Prob. 7.128PCh. 7 - In a paper-drying process, the paper moves on a...Ch. 7 - Prob. 7.131PCh. 7 - Prob. 7.132PCh. 7 - Prob. 7.133PCh. 7 - Prob. 7.134PCh. 7 - Prob. 7.136PCh. 7 - It has been suggested that heat transfer from a...Ch. 7 - Prob. 7.138PCh. 7 - Cylindrical dry-bulb and wet-bulb thermometers are...Ch. 7 - The thermal pollution problem is associated with...Ch. 7 - Cranberries are harvested by flooding the bogs in...Ch. 7 - A spherical drop of water, 0.5 mm in diameter, is...Ch. 7 - Prob. 7.143PCh. 7 - Prob. 7.144PCh. 7 - Prob. 7.145PCh. 7 - Prob. 7.146PCh. 7 - Prob. 7.147PCh. 7 - Consider an air-conditioning system composed of a...Ch. 7 - Prob. 7.149P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Engine oil at 100C flows over and parallel to a flat surface at a velocity of 3 m/s. Calculate the thickness of the hydrodynamic boundary layer at a distance 0.3 m from the leading edge of the surface.arrow_forwardsolve fastarrow_forward8- Air (p = 1.21 kg/m') flows over a thin flat plate 1 m long and 0.3 m wide. The flow is uniform at the leading edge of the plate. Assume the velocity profile in the boundary layer is linear, and the free stream velocity is 2.7 m/s. Using control volume (abcd) shown in figure, compute the mass flow rate across surface (ab). Determine the magnitude and direction of the x- component of the force required to hold plate stationary. [3.9×10 kg/s ; -3.5x10 N]arrow_forward
- What’s the correct answer for this please?arrow_forwardWhat’s the correct answer for this please?arrow_forwardConsider two cases involving the parallel flow of dry air at V= 1.5 m/s, T∞=45°C, and atmospheric pressure over an isothermal plate at Ts=20°C. In the first case, Rex,c=R5 × 105, while in the second case the flow is tripped to a turbulent state at x=0 m. At what x‐location, in m, are the thermal boundary layer thicknesses of the two cases equal? What are the local heat fluxes, in W/m2, at this location for the two cases?arrow_forward
- Evaluate the capillary number for water at 20°C and a velocity of 5 cm/s. For water at 20°C, p = 0.001 kg/m-s and Y= 0.0728 N/m.arrow_forwardQ1- Air at 27°C and 1 atm flows over a flat plate at a speed of 2 m/s. Calculate the boundary- layer thickness at distances of 20 cm and 40 cm from the leading edge of the plate. The viscosity of air at 27°C is 1.85×105 kg/m. s. density of air 1.177kg/m³arrow_forwardThe answer is handwritten and step by steparrow_forward
- Consider two cases involving parallel flow of dry air at V = 3.5 m/s, T, = 45°C, and atmospheric pressure over an isothermal plate at T, = 20°C. In the first case, Ree = 5× 105, while in the second case the flow is tripped to a turbulent state at.x = 0m. At what x -location, in m, are the thermal boundary layer thicknesses of the two cases equal? What are the local heat fluxes, in W/m?, at this location for the two cases? X = m d'am W/m2 i urb W/m? iarrow_forwardConsider the laminar boundary layer flow of an isothermal fluid ( U ∞ , T ∞ ) over a flat isothermal wall ( T 0 ). At a certain distance x from the leading edge, the local skin friction coefficient is C f , x = 0.0066. What is the value of the local Nusselt number at the same location if the Prandtl number is Pr = 7?arrow_forwardAtmospheric air with free flow velocity U_∞= 30 m/s flows through a circular cylinder at T_∞= 250 K and D = 2.5 cm diameter. The surface of the circular cylinder is kept at a uniform temperature T_w = 350 K.The CD drag coefficient is 1.1. (D=1 cm- 3 cm and U_∞= 10 m/sec 30 m/s)(a) Calculate the average heat transfer coefficient ( h ̅_m,W/m2K)(b) Determine the amount of heat transfer (Q, W) per 1 m length of the cylinder(c) Calculate the drag force (FD, N) acting on the 1 m length of the cylinder FD=0.1 A=0.34 D=2.9 cd=1.2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license