Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.120P
a.
To determine
The rate of water loss from the first, third and fourth trays.
b.
To determine
The estimate the temperature of the water in each of the designated trays.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
7: horizontal steel pipe having a diameter of 5 cm is maintained at a temperature of 50◦C in a large room where the air and wall temperature are at 20◦C. The surface emissivity of the steel may be taken as 0.8. Using the data of Table 1-3, calculate the total heat lost by the pipe per unit length.
A long, horizontal, cylindrical steel reactor, 1 m in diameter, has a surface temperature of 300ºC. The emissivity of the steel is 0.6, and the heat transfer coefficient for natural convection is 5 W m−2 K−1 . Heat is lost by convection to the air at 15ºC, and also by radiation to the surroundings, which can be considered to be a black body at 15ºC.
a) Calculate the total heat loss per metre length of the reactor, and the proportions lost by convection and radiation
b) The reactor is then insulated with a thin layer of insulation material to reduce the total heat loss to one-tenth of its original value. This causes the surface temperature of the steel to rise to 400ºC. The thermal conductivity of the insulation is 0.01 W m−1 K−1 , and its surface emissivity is 0.2. Show that the resulting surface temperature of the insulation is about 89ºC, and calculate the thickness of insulation required, stating any assumptions made.
Specifically need help with part b
A long, horizontal, cylindrical steel reactor, 1 m in diameter, has a surface temperature of 300ºC. The emissivity of the steel is 0.6, and the heat transfer coefficient for natural convection is 5 W m−2 K−1 . Heat is lost by convection to the air at 15ºC, and also by radiation to the surroundings, which can be considered to be a black body at 15ºC. a) Calculate the total heat loss per metre length of the reactor, and the proportions lost by convection and radiation.
b) The reactor is then insulated with a thin layer of insulation material to reduce the total heat loss to one-tenth of its original value. This causes the surface temperature of the steel to rise to 400ºC. The thermal conductivity of the insulation is 0.01 W m−1 K−1 , and its surface emissivity is 0.2. Show that the resulting surface temperature of the insulation is about 89ºC, and calculate the thickness of insulation required, stating any assumptions made.
can you solve part b please?
Chapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 7 - Consider the following fluids at a film...Ch. 7 - Engine oil at 100C and a velocity of 0.1 m/s flows...Ch. 7 - Consider steady, parallel flow of atmospheric air...Ch. 7 - Consider a liquid metal (Pr1), with free stream...Ch. 7 - Consider the velocity boundary layer profile for...Ch. 7 - Consider a steady, turbulent boundary layer on and...Ch. 7 - Consider flow over a flat plate for which it is...Ch. 7 - A flat plate of width 1 m is maintained at a...Ch. 7 - An electric air heater consists of a horizontal...Ch. 7 - Consider atmospheric air at 25C and a velocity of...
Ch. 7 - Repeat Problem 7.11 for the case when the boundary...Ch. 7 - Consider water at 27°C in parallel flow over an...Ch. 7 - Explain under what conditions the total rate of...Ch. 7 - In fuel cell stacks, it is desirable to operate...Ch. 7 - The roof of a refrigerated truck compartment is of...Ch. 7 - The top surface of a heated compartment consists...Ch. 7 - Calculate the value of the average heat transfer...Ch. 7 - The proposed design for an anemometer to determine...Ch. 7 - Steel (AISI 1010) plates of thickness =6mm and...Ch. 7 - Consider a rectangular fin that is used to cool a...Ch. 7 - The Weather Channel reports that it is a hot,...Ch. 7 - In the production of sheet metals or plastics, it...Ch. 7 - An array of electronic chips is mounted within a...Ch. 7 - A steel strip emerges from the hot roll section of...Ch. 7 - In Problem 7.23. an anemometer design was...Ch. 7 - One hundred electrical components, each...Ch. 7 - The boundary layer associated with parallel flow...Ch. 7 - Forced air at 250C and 10 m/s is used to cool...Ch. 7 - Air at atmospheric pressure and a temperature of...Ch. 7 - Consider a thin, 50mm50mm fuel cell similar to...Ch. 7 - The cover plate of a flat-plate solar collector is...Ch. 7 - An array of 10 silicon chips, each of length...Ch. 7 - A square (10mm10mm) silicon chip is insulated on...Ch. 7 - A circular pipe of 25-mm outside diameter is...Ch. 7 - An L=1-m- long vertical copper tube of inner...Ch. 7 - A long, cylindrical, electrical heating element of...Ch. 7 - Consider the conditions of Problem 7.49, but now...Ch. 7 - Pin fins are to be specified for use in an...Ch. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - Hot water at 500C is routed from one building in...Ch. 7 - In a manufacturing process, long aluminum rods of...Ch. 7 - Prob. 7.58PCh. 7 - To determine air velocity changes, it is proposed...Ch. 7 - Determine the convection heat loss from both the...Ch. 7 - Prob. 7.63PCh. 7 - Prob. 7.64PCh. 7 - Prob. 7.67PCh. 7 - A thermocouple is inserted into a hot air duct to...Ch. 7 - Consider a sphere with a diameter of 20 mm and a...Ch. 7 - Prob. 7.76PCh. 7 - A spherical, underwater instrument pod used to...Ch. 7 - Worldwide. over a billion solder balls must be...Ch. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Consider the plasma spray coating process of...Ch. 7 - Prob. 7.83PCh. 7 - Tissue engineering involves the development of...Ch. 7 - Consider temperature measurement in a gas stream...Ch. 7 - Prob. 7.89PCh. 7 - A preheater involves the use of condensing steam...Ch. 7 - Prob. 7.91PCh. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - Repeat Problem 7.94, but with NL=7,NT=10, and...Ch. 7 - Heating and cooling with miniature impinging jets...Ch. 7 - A circular transistor of 10-mm diameter is cooled...Ch. 7 - A long rectangular plate of AISI 304 stainless...Ch. 7 - A cryogenic probe is used to treat cancerous skin...Ch. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Consider the packed bed of aluminum spheres...Ch. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.111PCh. 7 - Packed beds of spherical panicles can be sintered...Ch. 7 - Prob. 7.114PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Prob. 7.118PCh. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Dry air at 35°C and a velocity of 20 m/s flows...Ch. 7 - Prob. 7.123PCh. 7 - Benzene, a known carcinogen, has been spilled on...Ch. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Condenser cooling water for a power plant is...Ch. 7 - Prob. 7.128PCh. 7 - In a paper-drying process, the paper moves on a...Ch. 7 - Prob. 7.131PCh. 7 - Prob. 7.132PCh. 7 - Prob. 7.133PCh. 7 - Prob. 7.134PCh. 7 - Prob. 7.136PCh. 7 - It has been suggested that heat transfer from a...Ch. 7 - Prob. 7.138PCh. 7 - Cylindrical dry-bulb and wet-bulb thermometers are...Ch. 7 - The thermal pollution problem is associated with...Ch. 7 - Cranberries are harvested by flooding the bogs in...Ch. 7 - A spherical drop of water, 0.5 mm in diameter, is...Ch. 7 - Prob. 7.143PCh. 7 - Prob. 7.144PCh. 7 - Prob. 7.145PCh. 7 - Prob. 7.146PCh. 7 - Prob. 7.147PCh. 7 - Consider an air-conditioning system composed of a...Ch. 7 - Prob. 7.149P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.26 Repeat Problem 1.25 but assume that the surface of the storage vessel has an absorbance (equal to the emittance) of 0.1. Then determine the rate of evaporation of the liquid oxygen in kilograms per second and pounds per hour, assuming that convection can be neglected. The heat of vaporization of oxygen at –183°C is .arrow_forwardDetermine the power requirement of a soldering iron in which the tip is maintained at 400C. The tip is a cylinder 3 mm in diameter and 10 mm long. The surrounding air temperature is 20C, and the average convection heat transfer coefficient over the tip is 20W/m2K. The tip is highly polished initially, giving it a very low emittance.arrow_forwardA long electrical conductor of 10 mm diameter is concentric with a refrigerated cylindrical tube of 50 mm diameter whose surface has an emissivity of 0.9 and temperature of 27 °C. The electrical conductor has a surface emissivity of 0.6 and dissipates 6.0 W per meter length. Assuming that the space between the two surfaces is empty, calculate the surface temperature of the conductor.arrow_forward
- Heat transferarrow_forwardTwo parallel rectangular surfaces 1m x 2m are opposite to each other at adistance of 4 m. The surfaces are black and at 100 °C and 200 °C, respectively.Calculate the heat exchange by radiation between the two surfaces.arrow_forwardAfter sunset, radiant energy can be sensed by a person standing near a brick wall. Such walls frequently have surface temperatures around 44 °C, and typical brick emissivity values are on the order of 0.92. What would be the radiant thermal flux per square metre from a brick wall at this temperature?arrow_forward
- Space is considered a perfect black body with T= - 70 celsius AirDoes not absorb heat radiation from the water in the bowl.Air temperature is considered constant TAir = 15 celsiusHeat transfer coefficient from water to air: hc = 2.6 W/(m2∙celsius) cabbage with waterDepth to the water in the bowl: H = 0.020 mBase area to water layer: A= 0.020 m2Starting temperature: T0 = 15 celsiusEmissivity to water: = 0.98 a) Calculate heat transport by radiation from the water in the bowl to space at initial conditions. b) Calculate net heat transport from the water in the bowl at water temperature T= 0 celsius (beginning of freezing).arrow_forwardA thermocouple is used to measure the temperature of hot gas flowing in a duct having a wall temperature of 700 K. The temperature indicated by the thermocouple is 900 K. Estimate the true temperature of the air. Take the duct walls to be effectively "black", the emissivity of the thermocouple bead to be 0.2 and the convective heat-transfer coefficient between gas and thermocouple bead to be 160 W/m2 K. Assume conduction along the lead wires to be negligible. O a. 729.48 K O b. 1029.48 K O c. 829.48 K O d. 929.48 Karrow_forwardAn infrared camera is used to measure a temperature at a tissue location. The infrared camera uses the same equation as that in the lecture notes. When the total hemispherical emissivity is selected as &=1.0, the temperature reading on the camera is 45°C. (a) Based on the equation given in the notes, please calculate the radiation heat flux received by the camera qck. The Stefan-Boltzmann's constant ois 5.67*108 W/(m²K¹). (b) However, you notice that the actual emissivity of the tissue surface should be 0.95. The room temperature is 20°C. Use the equation again to calculate the temperature of the tissue location, note that qck should be the same as in (a). What is the absolute error of the measurement if both the room temperature and deviation from a perfect blackbody surface are not considered?arrow_forward
- Liquefied natural gas (LNG) is transported around the globe using ships similar to thatshown in Figure QA3. This ship has four pressurised cylindrical steel tanks each ofradius of 20 m. The tanks are internally insulated with 30 cm of polyurethane foamwhich keeps the LNG at a constant -162 ºC. Take the effective sky temperature is 265K and the net radiative thermal energy exchange with the sky as 1x10^6 W. (a) Calculate the surface temperature of the end (facing the sun) of a tank.(b) Calculate the conductive heat transfer through the end (facing the sun)of a tank. DATA FOR QUESTION: Thermal conductivity, polyurethane foam = 0.02 W/mKStefan’s Constant = 5.67x10^-8 W/m^2K^4Emissivity, steel = 0.95 answers: a) 375K b) 22.1kWarrow_forwardLiquefied natural gas (LNG) is transported around the globe using ships similar to thatshown in Figure QA3. This ship has four pressurised cylindrical steel tanks each ofradius of 20 m. The tanks are internally insulated with 30 cm of polyurethane foamwhich keeps the LNG at a constant -162 ºC. Take the effective sky temperature is 265K and the net radiative thermal energy exchange with the sky as 1x106 W. Calculate the surface temperature of the end (facing the sun) of a tank. Calculate the conductive heat transfer through the end (facing the sun)of a tank.arrow_forwardLiquefied natural gas (LNG) is transported around the globe using ships similar to thatshown in Figure QA3. This ship has four pressurised cylindrical steel tanks each ofradius of 20 m. The tanks are internally insulated with 30 cm of polyurethane foamwhich keeps the LNG at a constant -162 ºC. Take the effective sky temperature is 265K and the net radiative thermal energy exchange with the sky as 1x10^6 W. (a) Calculate the surface temperature of the end (facing the sun) of a tank.(b) Calculate the conductive heat transfer through the end (facing the sun)of a tank. answers: a) 375K b) 22.1kWarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license