Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.136P
(a)
To determine
The heat loss from the cylinder if the wind velocity is
(b)
To determine
The heat loss from the skin if it is covered with thin layer of water at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A flat plate of 10m long is maintained at a uniform temperature of 40°C. Atmospheric air at 27°C and a
velocity of 15.27 m/s flows over the plate. Determine the heat flow rate per unit width from the surface
of the plate by using the thermophysical properties of air: u = 18.46 x 10-6 N.s/m2, p = 1.1614 kg/m², Pr
= 0.707, k = 0.0263 W/m.K.
no previous attempt please
Consider a flat plate placed inside a wind tunnel, and air at 1 ATM and 20°C is flowing with a free flow velocity of 60 m/s. What is the minimum length of the plate needed for the Reynolds number to reach 2 × 107? If the critical Reynolds number for external flow is 5 × 105, what type of flow regime would the airflow experience at 0.2 m from the leading edge?
I need the solution from fundamental concepts of how the heat flow behaves in the system
Chapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 7 - Consider the following fluids at a film...Ch. 7 - Engine oil at 100C and a velocity of 0.1 m/s flows...Ch. 7 - Consider steady, parallel flow of atmospheric air...Ch. 7 - Consider a liquid metal (Pr1), with free stream...Ch. 7 - Consider the velocity boundary layer profile for...Ch. 7 - Consider a steady, turbulent boundary layer on and...Ch. 7 - Consider flow over a flat plate for which it is...Ch. 7 - A flat plate of width 1 m is maintained at a...Ch. 7 - An electric air heater consists of a horizontal...Ch. 7 - Consider atmospheric air at 25C and a velocity of...
Ch. 7 - Repeat Problem 7.11 for the case when the boundary...Ch. 7 - Consider water at 27°C in parallel flow over an...Ch. 7 - Explain under what conditions the total rate of...Ch. 7 - In fuel cell stacks, it is desirable to operate...Ch. 7 - The roof of a refrigerated truck compartment is of...Ch. 7 - The top surface of a heated compartment consists...Ch. 7 - Calculate the value of the average heat transfer...Ch. 7 - The proposed design for an anemometer to determine...Ch. 7 - Steel (AISI 1010) plates of thickness =6mm and...Ch. 7 - Consider a rectangular fin that is used to cool a...Ch. 7 - The Weather Channel reports that it is a hot,...Ch. 7 - In the production of sheet metals or plastics, it...Ch. 7 - An array of electronic chips is mounted within a...Ch. 7 - A steel strip emerges from the hot roll section of...Ch. 7 - In Problem 7.23. an anemometer design was...Ch. 7 - One hundred electrical components, each...Ch. 7 - The boundary layer associated with parallel flow...Ch. 7 - Forced air at 250C and 10 m/s is used to cool...Ch. 7 - Air at atmospheric pressure and a temperature of...Ch. 7 - Consider a thin, 50mm50mm fuel cell similar to...Ch. 7 - The cover plate of a flat-plate solar collector is...Ch. 7 - An array of 10 silicon chips, each of length...Ch. 7 - A square (10mm10mm) silicon chip is insulated on...Ch. 7 - A circular pipe of 25-mm outside diameter is...Ch. 7 - An L=1-m- long vertical copper tube of inner...Ch. 7 - A long, cylindrical, electrical heating element of...Ch. 7 - Consider the conditions of Problem 7.49, but now...Ch. 7 - Pin fins are to be specified for use in an...Ch. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - Hot water at 500C is routed from one building in...Ch. 7 - In a manufacturing process, long aluminum rods of...Ch. 7 - Prob. 7.58PCh. 7 - To determine air velocity changes, it is proposed...Ch. 7 - Determine the convection heat loss from both the...Ch. 7 - Prob. 7.63PCh. 7 - Prob. 7.64PCh. 7 - Prob. 7.67PCh. 7 - A thermocouple is inserted into a hot air duct to...Ch. 7 - Consider a sphere with a diameter of 20 mm and a...Ch. 7 - Prob. 7.76PCh. 7 - A spherical, underwater instrument pod used to...Ch. 7 - Worldwide. over a billion solder balls must be...Ch. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Consider the plasma spray coating process of...Ch. 7 - Prob. 7.83PCh. 7 - Tissue engineering involves the development of...Ch. 7 - Consider temperature measurement in a gas stream...Ch. 7 - Prob. 7.89PCh. 7 - A preheater involves the use of condensing steam...Ch. 7 - Prob. 7.91PCh. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - Repeat Problem 7.94, but with NL=7,NT=10, and...Ch. 7 - Heating and cooling with miniature impinging jets...Ch. 7 - A circular transistor of 10-mm diameter is cooled...Ch. 7 - A long rectangular plate of AISI 304 stainless...Ch. 7 - A cryogenic probe is used to treat cancerous skin...Ch. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Consider the packed bed of aluminum spheres...Ch. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.111PCh. 7 - Packed beds of spherical panicles can be sintered...Ch. 7 - Prob. 7.114PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Prob. 7.118PCh. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Dry air at 35°C and a velocity of 20 m/s flows...Ch. 7 - Prob. 7.123PCh. 7 - Benzene, a known carcinogen, has been spilled on...Ch. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Condenser cooling water for a power plant is...Ch. 7 - Prob. 7.128PCh. 7 - In a paper-drying process, the paper moves on a...Ch. 7 - Prob. 7.131PCh. 7 - Prob. 7.132PCh. 7 - Prob. 7.133PCh. 7 - Prob. 7.134PCh. 7 - Prob. 7.136PCh. 7 - It has been suggested that heat transfer from a...Ch. 7 - Prob. 7.138PCh. 7 - Cylindrical dry-bulb and wet-bulb thermometers are...Ch. 7 - The thermal pollution problem is associated with...Ch. 7 - Cranberries are harvested by flooding the bogs in...Ch. 7 - A spherical drop of water, 0.5 mm in diameter, is...Ch. 7 - Prob. 7.143PCh. 7 - Prob. 7.144PCh. 7 - Prob. 7.145PCh. 7 - Prob. 7.146PCh. 7 - Prob. 7.147PCh. 7 - Consider an air-conditioning system composed of a...Ch. 7 - Prob. 7.149P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5.7 The average Reynolds number for air passing in turbulent flow over a 2-m-long, flat plate is . Under these conditions, the average Nusselt number was found to be equal to 4150. Determine the average heat transfer coefficient for an oil having thermal properties similar to those in Appendix 2, Table 18, at at the same Reynolds number and flowing over the same plate.arrow_forwardFUNDAMENTALS OF CONVECTION Consider a flat plate positioned inside a wind tunnel, and air at 1 atm and 20°C is flowing with a free stream velocity of 60 m/s. What is the minimum length of the plate necessary for the Reynolds number to reach 2x107? If the critical Reynolds number is 5x105, what type of flow regime would the airflow experience at 0.2 m from the leading edge? Please, I need the solution from fundamental concepts of how the heat flow behaves in the system. That it be answered with theory of the subjectarrow_forwardA flat plate 1.0 m wide and 1.0m long is placed in a wind tunnel. The temperature and the velocity of free stream air is 10°C and 80 m/s respectively. The flow over the whole length of the plate is made turbulent with the help of a turbulizing grid placed upstream of the plate. Calculate the mean value of the heat transfer coefficient from the surface of the plate.arrow_forward
- Engine oil at 100°C and a velocity of 0.20 m/s flows over both surfaces of a 1.1-m-long flat plate maintained at 20°C. Determine: (a) The velocity and thermal boundary layer thicknesses at the trailing edge. (b) The local heat flux and surface shear stress at the trailing edge. (c) The total drag force and heat transfer per unit width of the plate. Determine the velocity boundary layer thickness & at the trailing edge, in m. 8 = i m Determine the thermal boundary layer thicknesses &, at the trailing edge, in m. 8, = i m Determine the magnitude of the local heat flux at the trailing edge, W/m². q" x = i W/m² Determine the local surface shear stress at the trailing edge, in N/m². Ts, L i N/m² Determine the total drag force per unit width of the plate, in N/m. D' = i N/m Determine the magnitude of the heat transfer per unit width of the plate, in W/m. d' = W/m iarrow_forwardEngine oil at 100°C and a velocity of 0.1 m/s flows over both surfaces of a 1.2-m-long flat plate maintained at 20°C. Determine: (a) The velocity and thermal boundary layer thicknesses at the trailing edge. (b) The local heat flux and surface shear stress at the trailing edge. (c) The total drag force and heat transfer per unit width of the plate. Determine the velocity boundary layer thickness & at the trailing edge, in m. 8 = i m Determine the thermal boundary layer thicknesses &, at the trailing edge, in m. d = i m Determine the magnitude of the local heat flux at the trailing edge, W/m². q" x = i W/m² Determine the local surface shear stress at the trailing edge, in N/m². Ts, L = i N/m² Determine the total drag force per unit width of the plate, in N/m. D' = i N/m Determine the magnitude of the heat transfer per unit width of the plate, in W/m. q' = i W/marrow_forwardEngine oil at 100°C and a velocity of 0.20 m/s flows over both surfaces of a 1.2-m-long flat plate maintained at 20°C. Determine: (a) The velocity and thermal boundary layer thicknesses at the trailing edge. (b) The local heat flux and surface shear stress at the trailing edge. (c) The total drag force and heat transfer per unit width of the plate. Determine the velocity boundary layer thickness & at the trailing edge, in m. 8 = i m Determine the thermal boundary layer thicknesses , at the trailing edge, in m. 8, = i m Determine the magnitude of the local heat flux at the trailing edge, W/m². q" W/m² Determine the local surface shear stress at the trailing edge, in N/m². Ts, L = i N/m² Determine the total drag force per unit width of the plate, in N/m. D' = i N/m Determine the magnitude of the heat transfer per unit width of the plate, in W/m. d' = W/m iarrow_forward
- Engine oil at 100°C and a velocity of 0.15 m/s flows over both surfaces of a 1.2-m-long flat plate maintained at 20°C. Determine: (a) The velocity and thermal boundary layer thicknesses at the trailing edge. (b) The local heat flux and surface shear stress at the trailing edge. (c) The total drag force and heat transfer per unit width of the plate. Determine the velocity boundary layer thickness & at the trailing edge, in m. 8 = i m Determine the thermal boundary layer thicknesses 8, at the trailing edge, in m. m Determine the magnitude of the local heat flux at the trailing edge, W/m?. q" x W/m2 i Determine the local surface shear stress at the trailing edge, in N/m?. Ts, L. = N/m2 Determine the total drag force per unit width of the plate, in N/m. D' = i N/m Determine the magnitude of the heat transfer per unit width of the plate, in W/m. W/marrow_forwardAir at 24°C flows along a 4 m long flat plate with a velocity of 5 m/s. The plate is maintained at 130°C. Calculate the heat transfer coefficient over the entire length of the plate and the heat transfer rate per metre width of the plate.arrow_forward3. A 5m long x Im wide horizontal plate is heated on top and insulated on the bottom. The plate is maintained at 100°C. The air and walls of the room are maintained at 25°C. Determine the heat transfer by nature convection and radiation heat transfer. Also discuss the effect of a 5 m/s flow of air passing parallel along the 5m length of the plate. Should natural convection be considered with the 5m/s flow?arrow_forward
- Engine oil at 100°C and a velocity of 0.05 m/s flows over both surfaces of a 1.1-m-long flat plate maintained at 20°C. Determine: (a) The velocity and thermal boundary layer thicknesses at the trailing edge. (b) The local heat flux and surface shear stress at the trailing edge. (c) The total drag force and heat transfer per unit width of the plate. Determine the velocity boundary layer thickness ô at the trailing edge, in m. 8 = i Determine the thermal boundary layer thicknesses 8, at the trailing edge, in m. 8, = i m Determine the magnitude of the local heat flux at the trailing edge, W/m?. 9". i W/m? Determine the local surface shear stress at the trailing edge, in N/m2. Ts, L. N/m? Determine the total drag force per unit width of the plate, in N/m. D' = i N/m Determine the magnitude of the heat transfer per unit width of the plate, in W/m. W/marrow_forwardEngine oil at 100°C and a velocity of 0.20 m/s flows over both surfaces of a 0.8-m-long flat plate maintained at 20°C. Determine: (a) The velocity and thermal boundary layer thicknesses at the trailing edge. (b) The local heat flux and surface shear stress at the trailing edge. (c) The total drag force and heat transfer per unit width of the plate. Determine the velocity boundary layer thickness ô at the trailing edge, in m. i m Determine the thermal boundary layer thicknesses &, at the trailing edge, in m. i m Determine the magnitude of the local heat flux at the trailing edge, W/m2. q " x W/m? i Determine the local surface shear stress at the trailing edge, in N/m?. T5,L = i N/m2 Determine the total drag force per unit width of the plate, in N/m. D' = i N/m Determine the magnitude of the heat transfer per unit width of the plate, in W/m. i W/marrow_forwardExperiments have been conducted on a metallic cylinder 12.7 mm in diameter and 94 mm long. The cylinder is heated internally by an electrical heater and is subjected to a cross flow of air in a low-speed wind tunnel. Under a specific set of operating conditions for which the upstream air velocity and temperature were maintained at V = 10 m/s and 26.2°C, respectively, the heater power dissipation was measured to be P = 46 W, while the average cylinder surface temperature was determined to be T, = 128.4°C. It is estimated that 15% of the power dissipation is lost through the cumulative effect of surface radiation and conduction through the endpieces. Thermocouple for measuring airstream temperature Pitot tube for determining velocity Wind tunnel Power leads to electrical heater Heated cylinder Insulated endpiece Thermocouple leads 1. Determine the convection heat transfer coefficient from the experimental observations. 2. Compare the experimental result with the convection coefficient…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license